Commit 0eb35dda authored by Nikhilesh Bhatnagar's avatar Nikhilesh Bhatnagar

Added 11 more language pairs. Support for greater than 1 sentences per...

Added 11 more language pairs. Support for greater than 1 sentences per request. Support for different language pairs in the same request.
parent 19adc2a4
ssmt_triton_repo ssmt_triton_repo
himangy_triton_repo
\ No newline at end of file
...@@ -11,20 +11,18 @@ Quantization disabled until qualitative testing is performed. For now, the argum ...@@ -11,20 +11,18 @@ Quantization disabled until qualitative testing is performed. For now, the argum
```bash ```bash
git clone https://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git git clone https://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git
cd mt-model-deploy-dhruva cd mt-model-deploy-dhruva
bash make_triton_model_repo.sh "https://ssmt.iiit.ac.in/uploads/data_mining/models.zip" "int8" bash make_triton_model_repo.sh
docker build -t dhruva/ssmt-model-server:1 . docker build -t dhruva/himangy-model-server:1 .
nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssmt-triton-server -v./ssmt_triton_repo:/models dhruva/ssmt-model-server:1 nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-himangy-triton-server -v./himangy_triton_repo:/models dhruva/himangy-model-server:1
``` ```
## What this repo does ## What this repo does
* This repo contains the templates and component triton models for the SSMT project. * This repo contains the templates and component triton models for the SSMT project.
* Also contained is a Dockerfile to construct the triton server instance. * Also contained is a Dockerfile to construct the triton server instance.
* Given a URL and quantization method (those supported by CTranslate2 i.e. `int8`, `int8_float16`, `int8_bfloat16`, `int16`, `float16` and `bfloat16`) it will download, quantize and construct the SSMT Triton Repository in `./ssmt_triton_repo` (int8 is the most efficient in size and speed on NVIDIA T4).
* Dynamic batching and caching is supported and enabled by default. * Dynamic batching and caching is supported and enabled by default.
* The repository folder can me mounted to the dhruva ssmt triton server on `/models` and can be queried via a client. * The repository folder can me mounted to the dhruva himangy triton server on `/models` and can be queried via a client.
* Sample client code is also given as an ipython notebook. * Sample client code is also given as an ipython notebook.
* The `model.zip` package needs to contain a folder of `.pt` and `.src` files named `1` through `9` with each file corresponding to the following mapping: `{'en-hi': 1, 'hi-en': 2, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}`
## Architecture of the pipeline ## Architecture of the pipeline
...@@ -39,15 +37,15 @@ One can construct the triton repo like so: ...@@ -39,15 +37,15 @@ One can construct the triton repo like so:
```bash ```bash
git clone https://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git git clone https://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git
cd mt-model-deploy-dhruva cd mt-model-deploy-dhruva
bash make_triton_model_repo.sh "https://ssmt.iiit.ac.in/uploads/data_mining/models.zip" "int8" bash make_triton_model_repo.sh
``` ```
## Starting the triton server ## Starting the triton server
We customize the tritonserver image with the required python packages in a venv and enable the cache in the startup command. After the model repo has beeen built, one can build and run the server like so: We customize the tritonserver image with the required python packages in a venv and enable the cache in the startup command. After the model repo has beeen built, one can build and run the server like so:
```bash ```bash
docker build -t dhruva/ssmt-model-server:1 . docker build -t dhruva/himangy-model-server:1 .
nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssmt-triton-server -v./ssmt_triton_repo:/models dhruva/ssmt-model-server:1 nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-himangy-triton-server -v./himangy_triton_repo:/models dhruva/himangy-model-server:1
``` ```
## Querying the triton server ## Querying the triton server
......
#!/bin/bash #!/bin/bash
MODELS_URL=$1 wget -O models.zip "https://ssmt.iiit.ac.in/uploads/data_mining/models.zip" --no-check-certificate
QUANTIZATION=$2 wget "https://cdn.iiit.ac.in/cdn/ssmt.iiit.ac.in/uploads/data_mining/HimangY-oneMT-Models-V1.zip" --no-check-certificate
wget -O models.zip $MODELS_URL --no-check-certificate
unzip models.zip unzip models.zip
unzip HimangY-oneMT-Models-V1.zip
python3 -m venv ./ssmt_ct2 python3 -m venv ./ssmt_ct2
source ./ssmt_ct2/bin/activate source ./ssmt_ct2/bin/activate
pip install -U pip wheel pip install -U pip wheel; pip install ctranslate2 "OpenNMT-py==1.2.0"
pip install ctranslate2 "OpenNMT-py==1.2.0" cd HimangY-oneMT-Models-V1
cd models ct2-opennmt-py-converter --model_path 150001.pt --output_dir en-hi; mv 150001.src en-hi.src
ct2-opennmt-py-converter --model_path 1.pt --output_dir ./1_ct2 ct2-opennmt-py-converter --model_path 150002.pt --output_dir hi-en; mv 150002.src hi-en.src
ct2-opennmt-py-converter --model_path 2.pt --output_dir ./2_ct2 ct2-opennmt-py-converter --model_path 150003.pt --output_dir en-te; mv 150003.src en-te.src
# ct2-opennmt-py-converter --model_path 3.pt --output_dir ./3_ct2 ct2-opennmt-py-converter --model_path 150004.pt --output_dir te-en; mv 150004.src te-en.src
ct2-opennmt-py-converter --model_path 4.pt --output_dir ./4_ct2 ct2-opennmt-py-converter --model_path 150005.pt --output_dir hi-te; mv 150005.src hi-te.src
ct2-opennmt-py-converter --model_path 6.pt --output_dir ./6_ct2 ct2-opennmt-py-converter --model_path 150006.pt --output_dir te-hi; mv 150006.src te-hi.src
ct2-opennmt-py-converter --model_path 7.pt --output_dir ./7_ct2 ct2-opennmt-py-converter --model_path 150007.pt --output_dir hi-ur; mv 150007.src hi-ur.src
ct2-opennmt-py-converter --model_path 8.pt --output_dir ./8_ct2 ct2-opennmt-py-converter --model_path 150008.pt --output_dir ur-hi; mv 150008.src ur-hi.src
ct2-opennmt-py-converter --model_path 9.pt --output_dir ./9_ct2 # ct2-opennmt-py-converter --model_path 150009.pt --output_dir hi-gu; mv 150009.src hi-gu.src
ct2-opennmt-py-converter --model_path 150010.pt --output_dir gu-hi; mv 150010.src gu-hi.src
# ct2-opennmt-py-converter --model_path 150011.pt --output_dir hi-pa; mv 150011.src hi-pa.src
ct2-opennmt-py-converter --model_path 150013.pt --output_dir hi-or; mv 150013.src hi-or.src
ct2-opennmt-py-converter --model_path 150014.pt --output_dir or-hi; mv 150014.src or-hi.src
ct2-opennmt-py-converter --model_path 150015.pt --output_dir hi-ta; mv 150015.src hi-ta.src
ct2-opennmt-py-converter --model_path 150017.pt --output_dir hi-kn; mv 150017.src hi-kn.src
ct2-opennmt-py-converter --model_path 150018.pt --output_dir kn-hi; mv 150018.src kn-hi.src
ct2-opennmt-py-converter --model_path 150019.pt --output_dir ta-te; mv 150019.src ta-te.src
ct2-opennmt-py-converter --model_path 150020.pt --output_dir te-ta; mv 150020.src te-ta.src
cd ../models
ct2-opennmt-py-converter --model_path 1.pt --output_dir en-hi; mv 1.src en-hi.src
ct2-opennmt-py-converter --model_path 2.pt --output_dir hi-en; mv 2.src hi-en.src
# ct2-opennmt-py-converter --model_path 3.pt --output_dir en-te; mv 3.src en-te.src
ct2-opennmt-py-converter --model_path 4.pt --output_dir te-en; mv 4.src te-en.src
ct2-opennmt-py-converter --model_path 6.pt --output_dir hi-te; mv 6.src hi-te.src
ct2-opennmt-py-converter --model_path 7.pt --output_dir te-hi; mv 7.src te-hi.src
ct2-opennmt-py-converter --model_path 8.pt --output_dir en-gu; mv 8.src en-gu.src
ct2-opennmt-py-converter --model_path 9.pt --output_dir gu-en; mv 9.src gu-en.src
cd .. cd ..
mkdir ssmt_triton_repo mkdir himangy_triton_repo
cd ssmt_triton_repo cd himangy_triton_repo
cp -r ../triton_models/ssmt_pipeline nmt cp -r ../triton_models/nmt .
cp -r ../triton_models/ssmt_model_demuxer . cp -r ../triton_models/demuxer .
cp -r ../triton_models/ssmt_tokenizer . cp -r ../triton_models/tokenizer .
cp -r ../models/*.src ssmt_tokenizer/1/bpe_src cp -r ../triton_models/model_ct2 himangy-en-hi;mv ../HimangY-oneMT-Models-V1/en-hi himangy-en-hi/1/translator;mv ../HimangY-oneMT-Models-V1/en-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-en-hi/' himangy-en-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'en', 'hi'/" himangy-en-hi/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_1_ct2 cp -r ../triton_models/model_ct2 himangy-hi-en;mv ../HimangY-oneMT-Models-V1/hi-en himangy-hi-en/1/translator;mv ../HimangY-oneMT-Models-V1/hi-en.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-en/' himangy-hi-en/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'en'/" himangy-hi-en/1/model.py
cp -r ../models/1_ct2 ssmt_1_ct2/1/translator cp -r ../triton_models/model_ct2 himangy-en-te;mv ../HimangY-oneMT-Models-V1/en-te himangy-en-te/1/translator;mv ../HimangY-oneMT-Models-V1/en-te.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-en-te/' himangy-en-te/config.pbtxt;sed -i "s/input_lang, output_lang/'en', 'te'/" himangy-en-te/1/model.py
sed -i 's/model_name/ssmt_1_ct2/' ssmt_1_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-te-en;mv ../HimangY-oneMT-Models-V1/te-en himangy-te-en/1/translator;mv ../HimangY-oneMT-Models-V1/te-en.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-te-en/' himangy-te-en/config.pbtxt;sed -i "s/input_lang, output_lang/'te', 'en'/" himangy-te-en/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_2_ct2 cp -r ../triton_models/model_ct2 himangy-hi-te;mv ../HimangY-oneMT-Models-V1/hi-te himangy-hi-te/1/translator;mv ../HimangY-oneMT-Models-V1/hi-te.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-te/' himangy-hi-te/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'te'/" himangy-hi-te/1/model.py
cp -r ../models/2_ct2 ssmt_2_ct2/1/translator cp -r ../triton_models/model_ct2 himangy-te-hi;mv ../HimangY-oneMT-Models-V1/te-hi himangy-te-hi/1/translator;mv ../HimangY-oneMT-Models-V1/te-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-te-hi/' himangy-te-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'te', 'hi'/" himangy-te-hi/1/model.py
sed -i 's/model_name/ssmt_2_ct2/' ssmt_2_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-hi-ur;mv ../HimangY-oneMT-Models-V1/hi-ur himangy-hi-ur/1/translator;mv ../HimangY-oneMT-Models-V1/hi-ur.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-ur/' himangy-hi-ur/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'ur'/" himangy-hi-ur/1/model.py
# cp -r ../triton_models/ssmt_template_model_repo ssmt_3_ct2 cp -r ../triton_models/model_ct2 himangy-ur-hi;mv ../HimangY-oneMT-Models-V1/ur-hi himangy-ur-hi/1/translator;mv ../HimangY-oneMT-Models-V1/ur-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-ur-hi/' himangy-ur-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'ur', 'hi'/" himangy-ur-hi/1/model.py
# cp -r ../models/3_ct2 ssmt_3_ct2/1/translator cp -r ../triton_models/model_onmt himangy-hi-gu;mv ../HimangY-oneMT-Models-V1/150009.pt himangy-hi-gu/1/translator.pt;mv ../HimangY-oneMT-Models-V1/150009.src tokenizer/1/bpe_src/hi-gu.src;sed -i 's/model_name/himangy-hi-gu/' himangy-hi-gu/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'gu'/" himangy-hi-gu/1/model.py
# sed -i 's/model_name/ssmt_3_ct2/' ssmt_3_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-gu-hi;mv ../HimangY-oneMT-Models-V1/gu-hi himangy-gu-hi/1/translator;mv ../HimangY-oneMT-Models-V1/gu-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-gu-hi/' himangy-gu-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'gu', 'hi'/" himangy-gu-hi/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_4_ct2 cp -r ../triton_models/model_onmt himangy-hi-pa;mv ../HimangY-oneMT-Models-V1/150011.pt himangy-hi-pa/1/translator.pt;mv ../HimangY-oneMT-Models-V1/150011.src tokenizer/1/bpe_src/hi-pa.src;sed -i 's/model_name/himangy-hi-pa/' himangy-hi-pa/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'pa'/" himangy-hi-pa/1/model.py
cp -r ../models/4_ct2 ssmt_4_ct2/1/translator cp -r ../triton_models/model_ct2 himangy-hi-or;mv ../HimangY-oneMT-Models-V1/hi-or himangy-hi-or/1/translator;mv ../HimangY-oneMT-Models-V1/hi-or.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-or/' himangy-hi-or/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'or'/" himangy-hi-or/1/model.py
sed -i 's/model_name/ssmt_4_ct2/' ssmt_4_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-or-hi;mv ../HimangY-oneMT-Models-V1/or-hi himangy-or-hi/1/translator;mv ../HimangY-oneMT-Models-V1/or-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-or-hi/' himangy-or-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'or', 'hi'/" himangy-or-hi/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_6_ct2 # cp -r ../triton_models/model_ct2 himangy-hi-ta;mv ../HimangY-oneMT-Models-V1/hi-ta himangy-hi-ta/1/translator;mv ../HimangY-oneMT-Models-V1/hi-ta.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-ta/' himangy-hi-ta/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'ta'/" himangy-hi-ta/1/model.py
cp -r ../models/6_ct2 ssmt_6_ct2/1/translator cp -r ../triton_models/model_ct2 himangy-hi-kn;mv ../HimangY-oneMT-Models-V1/hi-kn himangy-hi-kn/1/translator;mv ../HimangY-oneMT-Models-V1/hi-kn.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-kn/' himangy-hi-kn/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'kn'/" himangy-hi-kn/1/model.py
sed -i 's/model_name/ssmt_6_ct2/' ssmt_6_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-kn-hi;mv ../HimangY-oneMT-Models-V1/kn-hi himangy-kn-hi/1/translator;mv ../HimangY-oneMT-Models-V1/kn-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-kn-hi/' himangy-kn-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'kn', 'hi'/" himangy-kn-hi/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_7_ct2 # cp -r ../triton_models/model_ct2 himangy-ta-te;mv ../HimangY-oneMT-Models-V1/ta-te himangy-ta-te/1/translator;mv ../HimangY-oneMT-Models-V1/ta-te.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-ta-te/' himangy-ta-te/config.pbtxt;sed -i "s/input_lang, output_lang/'ta', 'te'/" himangy-ta-te/1/model.py
cp -r ../models/7_ct2 ssmt_7_ct2/1/translator # cp -r ../triton_models/model_ct2 himangy-te-ta;mv ../HimangY-oneMT-Models-V1/te-ta himangy-te-ta/1/translator;mv ../HimangY-oneMT-Models-V1/te-ta.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-te-ta/' himangy-te-ta/config.pbtxt;sed -i "s/input_lang, output_lang/'te', 'ta'/" himangy-te-ta/1/model.py
sed -i 's/model_name/ssmt_7_ct2/' ssmt_7_ct2/config.pbtxt # cp -r ../triton_models/model_ct2 himangy-en-hi;mv ../models/en-hi himangy-en-hi/1/translator;mv ../models/en-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-en-hi/' himangy-en-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'en', 'hi'/" himangy-en-hi/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_8_ct2 # cp -r ../triton_models/model_ct2 himangy-hi-en;mv ../models/hi-en himangy-hi-en/1/translator;mv ../models/hi-en.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-en/' himangy-hi-en/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'en'/" himangy-hi-en/1/model.py
cp -r ../models/8_ct2 ssmt_8_ct2/1/translator # cp -r ../triton_models/model_onnmt himangy-en-te;mv ../models/3.pt himangy-en-te/1/translator.pt;mv ../models/3.src tokenizer/1/bpe_src/en-te.src;sed -i 's/model_name/himangy-en-te/' himangy-en-te/config.pbtxt;sed -i "s/input_lang, output_lang/'en', 'te'/" himangy-en-te/1/model.py
sed -i 's/model_name/ssmt_8_ct2/' ssmt_8_ct2/config.pbtxt # cp -r ../triton_models/model_ct2 himangy-te-en;mv ../models/te-en himangy-te-en/1/translator;mv ../models/te-en.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-te-en/' himangy-te-en/config.pbtxt;sed -i "s/input_lang, output_lang/'te', 'en'/" himangy-te-en/1/model.py
cp -r ../triton_models/ssmt_template_model_repo ssmt_9_ct2 # cp -r ../triton_models/model_ct2 himangy-hi-te;mv ../models/hi-te himangy-hi-te/1/translator;mv ../models/hi-te.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-hi-te/' himangy-hi-te/config.pbtxt;sed -i "s/input_lang, output_lang/'hi', 'te'/" himangy-hi-te/1/model.py
cp -r ../models/9_ct2 ssmt_9_ct2/1/translator # cp -r ../triton_models/model_ct2 himangy-te-hi;mv ../models/te-hi himangy-te-hi/1/translator;mv ../models/te-hi.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-te-hi/' himangy-te-hi/config.pbtxt;sed -i "s/input_lang, output_lang/'te', 'hi'/" himangy-te-hi/1/model.py
sed -i 's/model_name/ssmt_9_ct2/' ssmt_9_ct2/config.pbtxt cp -r ../triton_models/model_ct2 himangy-en-gu;mv ../models/en-gu himangy-en-gu/1/translator;mv ../models/en-gu.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-en-gu/' himangy-en-gu/config.pbtxt;sed -i "s/input_lang, output_lang/'en', 'gu'/" himangy-en-gu/1/model.py
cp -r ../triton_models/model_ct2 himangy-gu-en;mv ../models/gu-en himangy-gu-en/1/translator;mv ../models/gu-en.src tokenizer/1/bpe_src;sed -i 's/model_name/himangy-gu-en/' himangy-gu-en/config.pbtxt;sed -i "s/input_lang, output_lang/'gu', 'en'/" himangy-gu-en/1/model.py
cd .. cd ..
deactivate deactivate
rm -rf ssmt_ct2 rm -rf ssmt_ct2;rm -rf HimangY-oneMT-Models-V1;rm -rf models;rm -f models.zip;rm -f HimangY-oneMT-Models-V1.zip
rm -f models.zip \ No newline at end of file
rm -rf models
import json
import numpy
import asyncio
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args): self.target_dtype = pb_utils.triton_string_to_numpy(pb_utils.get_output_config_by_name(json.loads(args['model_config']), 'OUTPUT_TEXT')['data_type'])
async def execute(self, requests): return [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor('OUTPUT_TEXT', numpy.array([[pb_utils.get_output_tensor_by_name(result, 'OUTPUT_SENT').as_numpy()[0, 0].decode('utf-8')] for result in (await asyncio.gather(*awaits))], dtype=self.target_dtype))]) for awaits in [[pb_utils.InferenceRequest(model_name=f"himangy-{input_language_id[0].decode('utf-8')}-{output_language_id[0].decode('utf-8')}", requested_output_names=['OUTPUT_SENT'], inputs=[pb_utils.Tensor('INPUT_SENT_TOKENIZED', numpy.array([[input_text_tokenized[0].decode('utf-8')]], dtype='object'))]).async_exec() for input_text_tokenized, input_language_id, output_language_id in zip(pb_utils.get_input_tensor_by_name(request, 'INPUT_TEXT_TOKENIZED').as_numpy(), pb_utils.get_input_tensor_by_name(request, 'INPUT_LANGUAGE_ID').as_numpy(), pb_utils.get_input_tensor_by_name(request, 'OUTPUT_LANGUAGE_ID').as_numpy())] for request in requests]]
def finalize(self): pass
\ No newline at end of file
name: "ssmt_model_demuxer" name: "demuxer"
backend: "python" backend: "python"
max_batch_size: 4096 max_batch_size: 4096
...@@ -39,8 +39,4 @@ instance_group [ ...@@ -39,8 +39,4 @@ instance_group [
count: 1 count: 1
kind: KIND_CPU kind: KIND_CPU
} }
] ]
\ No newline at end of file
response_cache {
enable: true
}
...@@ -8,25 +8,24 @@ import triton_python_backend_utils as pb_utils ...@@ -8,25 +8,24 @@ import triton_python_backend_utils as pb_utils
class TritonPythonModel: class TritonPythonModel:
def initialize(self, args): def initialize(self, args):
current_path = os.path.dirname(os.path.abspath(__file__)) current_path = os.path.dirname(os.path.abspath(__file__))
self.source_lang, self.target_lang = input_lang, output_lang
self.model_config = json.loads(args["model_config"]) self.model_config = json.loads(args["model_config"])
self.device_id = int(json.loads(args['model_instance_device_id'])) self.device_id = int(json.loads(args['model_instance_device_id']))
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT") target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_SENT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"]) self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
try: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cuda", intra_threads=1, inter_threads=1, device_index=[self.device_id]) try: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cuda", intra_threads=1, inter_threads=1, device_index=[self.device_id])
except: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cpu", intra_threads=4) except: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cpu", intra_threads=4)
def clean_output(self, text): def clean_output(self, text):
text = text.replace('@@ ', '') text = text.replace('@@ ', '')
text = text.replace('\u200c', '')
if text.startswith('<to-gu> '): text = text[8:] if text.startswith('<to-gu> '): text = text[8:]
if text.endswith(' <to-gu>'): text = text[:-8] if text.endswith(' <to-gu>'): text = text[:-8]
return text return text
def execute(self, requests): def execute(self, requests):
source_list = [pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT_TOKENIZED") for request in requests] source_list = [pb_utils.get_input_tensor_by_name(request, "INPUT_SENT_TOKENIZED") for request in requests]
bsize_list = [source.as_numpy().shape[0] for source in source_list] bsize_list = [source.as_numpy().shape[0] for source in source_list]
src_sentences = [s[0].decode('utf-8').strip().split(' ') for source in source_list for s in source.as_numpy()] src_sentences = [s[0].decode('utf-8').strip().split(' ') for source in source_list for s in source.as_numpy()]
tgt_sentences = [self.clean_output(' '.join(result.hypotheses[0])) for result in self.translator.translate_iterable(src_sentences, max_batch_size=128, max_input_length=100, max_decoding_length=100)] tgt_sentences = [self.clean_output(' '.join(result.hypotheses[0])) for result in self.translator.translate_iterable(src_sentences, max_batch_size=128, max_input_length=100, max_decoding_length=100)]
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("OUTPUT_TEXT", numpy.array([[s]for s in islice(tgt_sentences, bsize)], dtype='object').astype(self.target_dtype))]) for bsize in bsize_list] responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("OUTPUT_SENT", numpy.array([[s]for s in islice(tgt_sentences, bsize)], dtype='object').astype(self.target_dtype))]) for bsize in bsize_list]
return responses return responses
def finalize(self): self.translator.unload_model()
def finalize(self): self.translator.unload_model() \ No newline at end of file
...@@ -4,14 +4,15 @@ max_batch_size: 512 ...@@ -4,14 +4,15 @@ max_batch_size: 512
input [ input [
{ {
name: "INPUT_TEXT_TOKENIZED" name: "INPUT_SENT_TOKENIZED"
data_type: TYPE_STRING data_type: TYPE_STRING
dims: [ 1 ] dims: [ 1 ]
} }
] ]
output [ output [
{ {
name: "OUTPUT_TEXT" name: "OUTPUT_SENT"
data_type: TYPE_STRING data_type: TYPE_STRING
dims: [ 1 ] dims: [ 1 ]
} }
...@@ -28,4 +29,4 @@ instance_group [ ...@@ -28,4 +29,4 @@ instance_group [
response_cache { response_cache {
enable: true enable: true
} }
\ No newline at end of file
import os
import json
import numpy
from itertools import islice
from argparse import Namespace
import triton_python_backend_utils as pb_utils
from onmt.translate.translator import build_translator
class TritonPythonModel:
def initialize(self, args):
current_path = os.path.dirname(os.path.abspath(__file__))
self.source_lang, self.target_lang = input_lang, output_lang
self.model_config = json.loads(args["model_config"])
self.device_id = int(json.loads(args['model_instance_device_id']))
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_SENT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
try: self.translator = build_translator(Namespace(tgt_prefix=False, alpha=0.0, batch_type='sents', beam_size=5, beta=-0.0, block_ngram_repeat=0, coverage_penalty='none', data_type='text', dump_beam='', fp32=True, gpu=self.device_id, ignore_when_blocking=[], length_penalty='none', max_length=100, max_sent_length=None, min_length=0, models=[f"{os.path.join(current_path, 'translator.pt')}"], n_best=1, output='/dev/null', phrase_table='', random_sampling_temp=1.0, random_sampling_topk=1, ratio=-0.0, replace_unk=False, report_align=False, report_time=False, seed=829, stepwise_penalty=False, tgt=None, verbose=False), report_score=False)
except: self.translator = build_translator(Namespace(tgt_prefix=False, alpha=0.0, batch_type='sents', beam_size=5, beta=-0.0, block_ngram_repeat=0, coverage_penalty='none', data_type='text', dump_beam='', fp32=True, gpu=-1, ignore_when_blocking=[], length_penalty='none', max_length=100, max_sent_length=None, min_length=0, models=[f"{os.path.join(current_path, 'translator.pt')}"], n_best=1, output='/dev/null', phrase_table='', random_sampling_temp=1.0, random_sampling_topk=1, ratio=-0.0, replace_unk=False, report_align=False, report_time=False, seed=829, stepwise_penalty=False, tgt=None, verbose=False), report_score=False)
def clean_output(self, text):
text = text.replace('@@ ', '')
text = text.replace('\u200c', '')
if text.startswith('<to-gu> '): text = text[8:]
if text.endswith(' <to-gu>'): text = text[:-8]
return text
def execute(self, requests):
source_list = [pb_utils.get_input_tensor_by_name(request, "INPUT_SENT_TOKENIZED") for request in requests]
bsize_list = [source.as_numpy().shape[0] for source in source_list]
src_sentences = [s[0].decode('utf-8').strip().split(' ') for source in source_list for s in source.as_numpy()]
tgt_sentences = [self.clean_output(result[0]) for result in self.translator.translate(src_sentences, batch_size=128)[1]]
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("OUTPUT_SENT", numpy.array([[s]for s in islice(tgt_sentences, bsize)], dtype='object').astype(self.target_dtype))]) for bsize in bsize_list]
return responses
def finalize(self): del self.translator
\ No newline at end of file
name: "model_name"
backend: "python"
max_batch_size: 512
input [
{
name: "INPUT_SENT_TOKENIZED"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "OUTPUT_SENT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
dynamic_batching {}
instance_group [
{
count: 1
kind: KIND_GPU
}
]
response_cache {
enable: true
}
\ No newline at end of file
...@@ -35,7 +35,7 @@ output [ ...@@ -35,7 +35,7 @@ output [
ensemble_scheduling { ensemble_scheduling {
step [ step [
{ {
model_name: "ssmt_tokenizer" model_name: "tokenizer"
model_version: 1 model_version: 1
input_map { input_map {
key: "INPUT_TEXT" key: "INPUT_TEXT"
...@@ -55,7 +55,7 @@ ensemble_scheduling { ...@@ -55,7 +55,7 @@ ensemble_scheduling {
} }
}, },
{ {
model_name: "ssmt_model_demuxer" model_name: "demuxer"
model_version: 1 model_version: 1
input_map { input_map {
key: "INPUT_TEXT_TOKENIZED" key: "INPUT_TEXT_TOKENIZED"
...@@ -75,8 +75,4 @@ ensemble_scheduling { ...@@ -75,8 +75,4 @@ ensemble_scheduling {
} }
} }
] ]
} }
\ No newline at end of file
response_cache {
enable: true
}
import json
import asyncio
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args):
self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'en-hi': 1, 'hi-en': 2, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}
async def execute(self, requests):
responses = []
infer_response_awaits = []
for request in requests:
language_pair = f"{pb_utils.get_input_tensor_by_name(request, 'INPUT_LANGUAGE_ID').as_numpy()[0, 0].decode('utf-8')}-{pb_utils.get_input_tensor_by_name(request, 'OUTPUT_LANGUAGE_ID').as_numpy()[0, 0].decode('utf-8')}"
inference_request = pb_utils.InferenceRequest(model_name=f'ssmt_{self.lang_pair_map[language_pair]}_ct2', requested_output_names=['OUTPUT_TEXT'], inputs=[pb_utils.get_input_tensor_by_name(request, 'INPUT_TEXT_TOKENIZED')])
infer_response_awaits.append(inference_request.async_exec())
responses = await asyncio.gather(*infer_response_awaits)
return responses
def finalize(self): pass
import os
import json
import numpy
from .apply_bpe import BPE
from ilstokenizer import tokenizer
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args):
current_path = os.path.dirname(os.path.abspath(__file__))
self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "INPUT_TEXT_TOKENIZED")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'en-hi': 1, 'hi-en': 2, 'en-te': 3, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}
self.bpes = {lang_pair: BPE(open(os.path.join(current_path, f'bpe_src/{model_id}.src'), encoding='utf-8')) for lang_pair, model_id in self.lang_pair_map.items()}
def tokenize_and_segment(self, input_text, source_lang, target_lang):
tokenized_text = tokenizer.tokenize(input_text)
if source_lang == 'en' and target_lang == 'gu': tokenized_text = f'<to-gu> {tokenized_text} <to-gu>'
return self.bpes[f'{source_lang}-{target_lang}'].segment(tokenized_text).strip()
def execute(self, requests):
source_gen = ((pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT"), pb_utils.get_input_tensor_by_name(request, "INPUT_LANGUAGE_ID"), pb_utils.get_input_tensor_by_name(request, "OUTPUT_LANGUAGE_ID")) for request in requests)
tokenized_gen = ((self.tokenize_and_segment(input_text[0].decode('utf-8'), input_language_id[0].decode('utf-8'), output_language_id[0].decode('utf-8')) for input_text, input_language_id, output_language_id in zip(input_texts.as_numpy(), input_language_ids.as_numpy(), output_language_ids.as_numpy())) for input_texts, input_language_ids, output_language_ids in source_gen)
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("INPUT_TEXT_TOKENIZED", numpy.array([[tokenized_sent] for tokenized_sent in tokenized_sents], dtype=self.target_dtype))]) for tokenized_sents in tokenized_gen]
return responses
def finalize(self): pass
import os
import json
import numpy
from glob import iglob
from .apply_bpe import BPE
from ilstokenizer import tokenizer
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args): self.target_dtype, self.bpes = pb_utils.triton_string_to_numpy(pb_utils.get_output_config_by_name(json.loads(args["model_config"]), "INPUT_TEXT_TOKENIZED")["data_type"]), {fname.rsplit('/', maxsplit=1)[-1][:-len('.src')]: BPE(open(fname, 'r', encoding='utf-8')) for fname in iglob(f'{os.path.dirname(os.path.abspath(__file__))}/bpe_src/*.src')}
def preprocess_text(self, text, source_lang, target_lang): return f"<to-gu> {text} <to-gu>" if source_lang == 'en' and target_lang == 'gu' else text
def execute(self, requests): return [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("INPUT_TEXT_TOKENIZED", numpy.array([[tokenized_sent] for tokenized_sent in tokenized_sents], dtype=self.target_dtype))]) for tokenized_sents in ((self.bpes[f"{input_language_id[0].decode('utf-8')}-{output_language_id[0].decode('utf-8')}"].segment(self.preprocess_text(tokenizer.tokenize(input_text[0].decode('utf-8').lower()), input_language_id[0].decode('utf-8'), output_language_id[0].decode('utf-8'))).strip() for input_text, input_language_id, output_language_id in zip(input_texts.as_numpy(), input_language_ids.as_numpy(), output_language_ids.as_numpy())) for input_texts, input_language_ids, output_language_ids in ((pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT"), pb_utils.get_input_tensor_by_name(request, "INPUT_LANGUAGE_ID"), pb_utils.get_input_tensor_by_name(request, "OUTPUT_LANGUAGE_ID")) for request in requests))]
def finalize(self): pass
\ No newline at end of file
name: "ssmt_tokenizer" name: "tokenizer"
backend: "python" backend: "python"
max_batch_size: 4096 max_batch_size: 4096
...@@ -39,8 +39,4 @@ instance_group [ ...@@ -39,8 +39,4 @@ instance_group [
count: 8 count: 8
kind: KIND_CPU kind: KIND_CPU
} }
] ]
\ No newline at end of file
response_cache {
enable: true
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment