Commit b0edb83b authored by Nikhilesh Bhatnagar's avatar Nikhilesh Bhatnagar

Deployment scripts

parent 598fa7b7
Pipeline #26 canceled with stages
ssmt_triton_repo
FROM nvcr.io/nvidia/tritonserver:23.06-py3
WORKDIR /opt/tritonserver
RUN apt-get update && apt-get install -y python3.10-venv
ENV VIRTUAL_ENV=/opt/dhruva-mt
RUN python3 -m venv $VIRTUAL_ENV
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install -U ctranslate2 OpenNMT-py==1.2.0 git+https://github.com/vmujadia/tokenizer.git
CMD ["tritonserver", "--model-repository=/models", "--cache-config=local,size=1048576"]
EXPOSE 8000
# mt-model-deploy-dhruva
## TL;DR
This repo contains code for python backend CTranslate2 based triton models for the SSMT project.
Prerequisites: `python3.xx-venv`, `nvidia-docker`
```bash
git clone http://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git
cd mt-model-deploy-dhruva
sh make_triton_model_repo.sh "https://ssmt.iiit.ac.in/uploads/data_mining/models.zip" "float16"
docker build -t dhruva/ssmt-model-server:1 .
nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssmt-triton-server -v./ssmt_triton_repo:/models dhruva/ssmt-model-server:1
```
## What this repo does
* This repo contains the templates and component triton models for the SSMT project.
* Also contained is a Dockerfile to construct the triton server instance.
* Given a URL and quantization method (those supported by CTranslate2 i.e. `int8`, `int8_float16`, `int8_bfloat16`, `int16`, `float16` and `bfloat16`) it will download, quantize and construct the SSMT Tritom Repository in `./ssmt_triton_repo`.
* Dynamic batching and caching is supported and enabled by default.
* The repository folder can me mounted to the dhruva ssmt triton server on `/models` and can be queried via a client.
* Sample client code is also given as an ipython notebook.
* The `model.zip` package needs to contain a folder of `.pt` and `.src` files named `1` through `9` with each file corresponding to the following mapping:
`{'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9}`
## Architecture of the pipeline
The pipeline consists of 4 components, executed in order:
* Tokenizer - This model is CPU only and tokenizes and applies BPE on the input string.
* Model Demuxer - This model is CPU only and depending on the language pair requested, queues up an `InferenceRequest` for the appropriate model and returns it as the response.
* Model - This is a GPU based model and it processes the tokenized text and returns the final form of the translated text to the caller.
* Pipeline - This is an ensemble model that wraps the above three components together and is the one meant to be exposed to the client.
The exact specifications of the model inputs and outputs can be looked at in the corresponding `config.pbtxt` files.
One can construct the triton repo like so:
```bash
git clone http://ssmt.iiit.ac.in/meitygit/ssmt/mt-model-deploy-dhruva.git
cd mt-model-deploy-dhruva
sh make_triton_model_repo.sh "https://ssmt.iiit.ac.in/uploads/data_mining/models.zip" "float16"
```
## Starting the triton server
We customize the tritonserver image with the required python packages in a venv and enable the cache in the startup command. After the model repo has beeen built, one can build and run the server like so:
```bash
docker build -t dhruva/ssmt-model-server:1 .
nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssmt-triton-server -v./ssmt_triton_repo:/models dhruva/ssmt-model-server:1
```
## Querying the triton server
We provide a sample ipython notebook that shows how to concurrently request the client for translations.
Prerequisites: `pip install "tritonclient[all]" tqdm numpy`
MODELS_URL=$1
QUANTIZATION=$2
wget -O models.zip $MODELS_URL
unzip models.zip
python3 -m venv ./ssmt_ct2
source ./ssmt_ct2/bin/activate
pip install ctranslate2 "OpenNMT-py==1.2.0"
cd models
ct2-opennmt-py-converter --model_path 1.pt --quantization $QUANTIZATION --output_dir ./1_ct2
ct2-opennmt-py-converter --model_path 2.pt --quantization $QUANTIZATION --output_dir ./2_ct2
ct2-opennmt-py-converter --model_path 3.pt --quantization $QUANTIZATION --output_dir ./3_ct2
ct2-opennmt-py-converter --model_path 4.pt --quantization $QUANTIZATION --output_dir ./4_ct2
ct2-opennmt-py-converter --model_path 6.pt --quantization $QUANTIZATION --output_dir ./6_ct2
ct2-opennmt-py-converter --model_path 7.pt --quantization $QUANTIZATION --output_dir ./7_ct2
ct2-opennmt-py-converter --model_path 8.pt --quantization $QUANTIZATION --output_dir ./8_ct2
ct2-opennmt-py-converter --model_path 9.pt --quantization $QUANTIZATION --output_dir ./9_ct2
cd ..
mkdir ssmt_triton_repo
cd ssmt_triton_repo
cp -r ../triton_models/ssmt_pipeline .
cp -r ../triton_models/ssmt_model_demuxer .
cp -r ../triton_models/ssmt_tokenizer .
cp -r ../models/*.src ssmt_tokenizer/1/bpe_src
cp -r ../triton_models/ssmt_template_model_repo ssmt_1_ct2
cp -r ../models/1_ct2 ssmt_1_ct2/1/translator
sed -i 's/model_name/ssmt_1_ct2/' ssmt_1_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_2_ct2
cp -r ../models/2_ct2 ssmt_2_ct2/1/translator
sed -i 's/model_name/ssmt_2_ct2/' ssmt_2_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_3_ct2
cp -r ../models/3_ct2 ssmt_3_ct2/1/translator
sed -i 's/model_name/ssmt_3_ct2/' ssmt_3_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_4_ct2
cp -r ../models/4_ct2 ssmt_4_ct2/1/translator
sed -i 's/model_name/ssmt_4_ct2/' ssmt_4_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_6_ct2
cp -r ../models/6_ct2 ssmt_6_ct2/1/translator
sed -i 's/model_name/ssmt_6_ct2/' ssmt_6_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_7_ct2
cp -r ../models/7_ct2 ssmt_7_ct2/1/translator
sed -i 's/model_name/ssmt_7_ct2/' ssmt_7_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_8_ct2
cp -r ../models/8_ct2 ssmt_8_ct2/1/translator
sed -i 's/model_name/ssmt_8_ct2/' ssmt_8_ct2/config.pbtxt
cp -r ../triton_models/ssmt_template_model_repo ssmt_9_ct2
cp -r ../models/9_ct2 ssmt_9_ct2/1/translator
sed -i 's/model_name/ssmt_9_ct2/' ssmt_9_ct2/config.pbtxt
cd ..
source deactivate
rm -rf ssmt_ct2
rm -f models.zip
rm -rf models
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from tqdm import tqdm\n",
"from random import choice\n",
"from tritonclient.utils import *\n",
"import tritonclient.http as httpclient\n",
"from multiprocessing.pool import ThreadPool"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"model_name = \"ssmt_pipeline\"\n",
"shape = [1]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def task(x):\n",
" lang_pair_map = list({'eng-hin': 1, 'hin-eng': 2, 'eng-tel':3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9}.keys())\n",
" with httpclient.InferenceServerClient(\"localhost:8000\") as client:\n",
" async_responses = []\n",
" for i in range(10):\n",
" s = 'this is a sentence.'\n",
" source_data = np.array([[s]], dtype='object')\n",
" inputs = [httpclient.InferInput(\"INPUT_TEXT\", source_data.shape, np_to_triton_dtype(source_data.dtype)), httpclient.InferInput(\"INPUT_LANGUAGE_ID\", source_data.shape, np_to_triton_dtype(source_data.dtype)), httpclient.InferInput(\"OUTPUT_LANGUAGE_ID\", source_data.shape, np_to_triton_dtype(source_data.dtype))]\n",
" inputs[0].set_data_from_numpy(np.array([[s]], dtype='object'))\n",
" langpair = choice(lang_pair_map)\n",
" inputs[1].set_data_from_numpy(np.array([[langpair.split('-')[0].strip()]], dtype='object'))\n",
" inputs[2].set_data_from_numpy(np.array([[langpair.split('-')[1].strip()]], dtype='object'))\n",
" outputs = [httpclient.InferRequestedOutput(\"OUTPUT_TEXT\")]\n",
" async_responses.append(client.async_infer(model_name, inputs, request_id=str(1), outputs=outputs))\n",
" for r in async_responses: r.get_result(timeout=10).get_response()\n",
" return 0"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1000/1000 [01:49<00:00, 9.15it/s]\n"
]
}
],
"source": [
"with ThreadPool(100) as pool:\n",
" for output in tqdm(pool.imap_unordered(task, range(1000), chunksize=1), total=1000): pass"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "model_metrics",
"language": "python",
"name": "model_metrics"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
import json
import asyncio
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args):
self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9}
async def execute(self, requests):
responses = []
infer_response_awaits = []
for request in requests:
language_pair = f"{pb_utils.get_input_tensor_by_name(request, 'INPUT_LANGUAGE_ID').as_numpy()[0, 0].decode('utf-8')}-{pb_utils.get_input_tensor_by_name(request, 'OUTPUT_LANGUAGE_ID').as_numpy()[0, 0].decode('utf-8')}"
inference_request = pb_utils.InferenceRequest(model_name=f'ssmt_{self.lang_pair_map[language_pair]}_ct2', requested_output_names=['OUTPUT_TEXT'], inputs=[pb_utils.get_input_tensor_by_name(request, 'INPUT_TEXT_TOKENIZED')])
infer_response_awaits.append(inference_request.async_exec())
responses = await asyncio.gather(*infer_response_awaits)
return responses
def finalize(self): pass
name: "ssmt_model_demuxer"
backend: "python"
max_batch_size: 4096
input [
{
name: "INPUT_TEXT_TOKENIZED"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "INPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "OUTPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "OUTPUT_TEXT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
dynamic_batching {}
instance_group [
{
count: 1
kind: KIND_CPU
}
]
response_cache {
enable: true
}
name: "ssmt_pipeline"
platform: "ensemble"
max_batch_size: 4096
input [
{
name: "INPUT_TEXT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "INPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "OUTPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "OUTPUT_TEXT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "ssmt_tokenizer"
model_version: 1
input_map {
key: "INPUT_TEXT"
value: "INPUT_TEXT"
}
input_map {
key: "INPUT_LANGUAGE_ID"
value: "INPUT_LANGUAGE_ID"
}
input_map {
key: "OUTPUT_LANGUAGE_ID"
value: "OUTPUT_LANGUAGE_ID"
}
output_map {
key: "INPUT_TEXT_TOKENIZED"
value: "INPUT_TEXT_TOKENIZED"
}
},
{
model_name: "ssmt_model_demuxer"
model_version: 1
input_map {
key: "INPUT_TEXT_TOKENIZED"
value: "INPUT_TEXT_TOKENIZED"
}
input_map {
key: "INPUT_LANGUAGE_ID"
value: "INPUT_LANGUAGE_ID"
}
input_map {
key: "OUTPUT_LANGUAGE_ID"
value: "OUTPUT_LANGUAGE_ID"
}
output_map {
key: "OUTPUT_TEXT"
value: "OUTPUT_TEXT"
}
}
]
}
response_cache {
enable: true
}
import os
import json
import numpy
from itertools import islice
from ctranslate2 import Translator
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args):
current_path = os.path.dirname(os.path.abspath(__file__))
self.model_config = json.loads(args["model_config"])
self.device_id = int(json.loads(args['model_instance_device_id']))
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
try: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cuda", intra_threads=1, inter_threads=1, device_index=[self.device_id])
except: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cpu", intra_threads=4)
def execute(self, requests):
source_list = [pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT_TOKENIZED") for request in requests]
bsize_list = [source.as_numpy().shape[0] for source in source_list]
src_sentences = [s[0].decode('utf-8').strip().split(' ') for source in source_list for s in source.as_numpy()]
tgt_sentences = [' '.join(result.hypotheses[0]).replace('@@ ', '') for result in self.translator.translate_iterable(src_sentences, max_batch_size=128, max_input_length=100, max_decoding_length=100)]
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("OUTPUT_TEXT", numpy.array([[s]for s in islice(tgt_sentences, bsize)], dtype='object').astype(self.target_dtype))]) for bsize in bsize_list]
return responses
def finalize(self): self.translator.unload_model()
name: "model_name"
backend: "python"
max_batch_size: 512
input [
{
name: "INPUT_TEXT_TOKENIZED"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "OUTPUT_TEXT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
dynamic_batching {}
instance_group [
{
count: 1
kind: KIND_GPU
}
]
response_cache {
enable: true
}
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
# flake8: noqa
"""Use operations learned with learn_bpe.py to encode a new text.
The text will not be smaller, but use only a fixed vocabulary, with rare words
encoded as variable-length sequences of subword units.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
# This file is retrieved from https://github.com/rsennrich/subword-nmt
from __future__ import unicode_literals, division
import sys
import codecs
import io
import argparse
import json
import re
from collections import defaultdict
# hack for python2/3 compatibility
from io import open
argparse.open = open
class BPE(object):
def __init__(self, codes, separator='@@', vocab=None, glossaries=None):
# check version information
firstline = codes.readline()
if firstline.startswith('#version:'):
self.version = tuple([int(x) for x in re.sub(
r'(\.0+)*$', '', firstline.split()[-1]).split(".")])
else:
self.version = (0, 1)
codes.seek(0)
self.bpe_codes = [tuple(item.split()) for item in codes]
# some hacking to deal with duplicates (only consider first instance)
self.bpe_codes = dict(
[(code, i) for (i, code) in reversed(list(enumerate(self.bpe_codes)))])
self.bpe_codes_reverse = dict(
[(pair[0] + pair[1], pair) for pair, i in self.bpe_codes.items()])
self.separator = separator
self.vocab = vocab
self.glossaries = glossaries if glossaries else []
self.cache = {}
def segment(self, sentence):
"""segment single sentence (whitespace-tokenized string) with BPE encoding"""
output = []
for word in sentence.split():
new_word = [out for segment in self._isolate_glossaries(word)
for out in encode(segment,
self.bpe_codes,
self.bpe_codes_reverse,
self.vocab,
self.separator,
self.version,
self.cache,
self.glossaries)]
for item in new_word[:-1]:
output.append(item + self.separator)
output.append(new_word[-1])
return ' '.join(output)
def _isolate_glossaries(self, word):
word_segments = [word]
for gloss in self.glossaries:
word_segments = [out_segments for segment in word_segments
for out_segments in isolate_glossary(segment, gloss)]
return word_segments
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input file (default: standard input).")
parser.add_argument(
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH',
required=True,
help="File with BPE codes (created by learn_bpe.py).")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file (default: standard output)")
parser.add_argument(
'--separator', '-s', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument(
'--vocabulary', type=argparse.FileType('r'), default=None,
metavar="PATH",
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.")
parser.add_argument(
'--vocabulary-threshold', type=int, default=None,
metavar="INT",
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV")
parser.add_argument(
'--glossaries', type=str, nargs='+', default=None,
metavar="STR",
help="Glossaries. The strings provided in glossaries will not be affected" +
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords")
return parser
def get_pairs(word):
"""Return set of symbol pairs in a word.
word is represented as tuple of symbols (symbols being variable-length strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries=None):
"""Encode word based on list of BPE merge operations, which are applied consecutively
"""
if orig in cache:
return cache[orig]
if orig in glossaries:
cache[orig] = (orig,)
return (orig,)
if version == (0, 1):
word = tuple(orig) + ('</w>',)
elif version == (0, 2): # more consistent handling of word-final segments
word = tuple(orig[:-1]) + (orig[-1] + '</w>',)
else:
raise NotImplementedError
pairs = get_pairs(word)
if not pairs:
return orig
while True:
bigram = min(pairs, key=lambda pair: bpe_codes.get(pair, float('inf')))
if bigram not in bpe_codes:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
# don't print end-of-word symbols
if word[-1] == '</w>':
word = word[:-1]
elif word[-1].endswith('</w>'):
word = word[:-1] + (word[-1].replace('</w>', ''),)
if vocab:
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator)
cache[orig] = word
return word
def recursive_split(segment, bpe_codes, vocab, separator, final=False):
"""Recursively split segment into smaller units (by reversing BPE merges)
until all units are either in-vocabulary, or cannot be split futher."""
try:
if final:
left, right = bpe_codes[segment + '</w>']
right = right[:-4]
else:
left, right = bpe_codes[segment]
except:
#sys.stderr.write('cannot split {0} further.\n'.format(segment))
yield segment
return
if left + separator in vocab:
yield left
else:
for item in recursive_split(left, bpe_codes, vocab, separator, False):
yield item
if (final and right in vocab) or (not final and right + separator in vocab):
yield right
else:
for item in recursive_split(right, bpe_codes, vocab, separator, final):
yield item
def check_vocab_and_split(orig, bpe_codes, vocab, separator):
"""Check for each segment in word if it is in-vocabulary,
and segment OOV segments into smaller units by reversing the BPE merge operations"""
out = []
for segment in orig[:-1]:
if segment + separator in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, False):
out.append(item)
segment = orig[-1]
if segment in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, True):
out.append(item)
return out
def read_vocabulary(vocab_file, threshold):
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold.
"""
vocabulary = set()
for line in vocab_file:
word, freq = line.split()
freq = int(freq)
if threshold == None or freq >= threshold:
vocabulary.add(word)
return vocabulary
def isolate_glossary(word, glossary):
"""
Isolate a glossary present inside a word.
Returns a list of subwords. In which all 'glossary' glossaries are isolated
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is:
['1934', 'USA', 'B', 'USA']
"""
if word == glossary or glossary not in word:
return [word]
else:
splits = word.split(glossary)
segments = [segment.strip() for split in splits[:-1]
for segment in [split, glossary] if segment != '']
return segments + [splits[-1].strip()] if splits[-1] != '' else segments
if __name__ == '__main__':
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
sys.stdout = io.TextIOWrapper(
sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True)
parser = create_parser()
args = parser.parse_args()
# read/write files as UTF-8
args.codes = codecs.open(args.codes.name, encoding='utf-8')
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
if args.vocabulary:
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
if args.vocabulary:
vocabulary = read_vocabulary(
args.vocabulary, args.vocabulary_threshold)
else:
vocabulary = None
bpe = BPE(args.codes, args.separator, vocabulary, args.glossaries)
for line in args.input:
args.output.write(bpe.segment(line).strip())
args.output.write('\n')
import os
import json
import numpy
from .apply_bpe import BPE
from ilstokenizer import tokenizer
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
def initialize(self, args):
current_path = os.path.dirname(os.path.abspath(__file__))
self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "INPUT_TEXT_TOKENIZED")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9}
self.bpes = {lang_pair: BPE(open(os.path.join(current_path, f'bpe_src/{model_id}.src'), encoding='utf-8')) for lang_pair, model_id in self.lang_pair_map.items()}
def execute(self, requests):
source_gen = ((pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT"), pb_utils.get_input_tensor_by_name(request, "INPUT_LANGUAGE_ID"), pb_utils.get_input_tensor_by_name(request, "OUTPUT_LANGUAGE_ID")) for request in requests)
tokenized_gen = (self.bpes[f"{input_language_id.as_numpy()[0, 0].decode('utf-8')}-{output_language_id.as_numpy()[0, 0].decode('utf-8')}"].segment(tokenizer.tokenize(input_text.as_numpy()[0, 0].decode('utf-8'))).strip() for input_text, input_language_id, output_language_id in source_gen)
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("INPUT_TEXT_TOKENIZED", numpy.array([[tokenized_sent]], dtype=self.target_dtype))]) for tokenized_sent in tokenized_gen]
return responses
def finalize(self): pass
name: "ssmt_tokenizer"
backend: "python"
max_batch_size: 4096
input [
{
name: "INPUT_TEXT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "INPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
input [
{
name: "OUTPUT_LANGUAGE_ID"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "INPUT_TEXT_TOKENIZED"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
dynamic_batching {}
instance_group [
{
count: 8
kind: KIND_CPU
}
]
response_cache {
enable: true
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment