import os import json import numpy from itertools import islice from ctranslate2 import Translator import triton_python_backend_utils as pb_utils class TritonPythonModel: def initialize(self, args): current_path = os.path.dirname(os.path.abspath(__file__)) self.model_config = json.loads(args["model_config"]) self.device_id = int(json.loads(args['model_instance_device_id'])) target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT") self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"]) try: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cuda", intra_threads=1, inter_threads=1, device_index=[self.device_id]) except: self.translator = Translator(f"{os.path.join(current_path, 'translator')}", device="cpu", intra_threads=4) def execute(self, requests): source_list = [pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT_TOKENIZED") for request in requests] bsize_list = [source.as_numpy().shape[0] for source in source_list] src_sentences = [s[0].decode('utf-8').strip().split(' ') for source in source_list for s in source.as_numpy()]
tgt_sentences = [' '.join(result.hypotheses[0]).replace('@@ ', '').removeprefix('<to-gu> ').removesuffix(' <to-gu>') for result in self.translator.translate_iterable(src_sentences, max_batch_size=128, max_input_length=100, max_decoding_length=100)]
responses = [pb_utils.InferenceResponse(output_tensors=[pb_utils.Tensor("OUTPUT_TEXT", numpy.array([[s]for s in islice(tgt_sentences, bsize)], dtype='object').astype(self.target_dtype))]) for bsize in bsize_list] return responses def finalize(self): self.translator.unload_model()