Commit 4dddbf5b authored by Nikhilesh Bhatnagar's avatar Nikhilesh Bhatnagar

Updated langcodes

parent 5092376f
...@@ -18,12 +18,11 @@ nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssm ...@@ -18,12 +18,11 @@ nvidia-docker run --gpus=all --rm --shm-size 5g --network=host --name dhruva-ssm
* This repo contains the templates and component triton models for the SSMT project. * This repo contains the templates and component triton models for the SSMT project.
* Also contained is a Dockerfile to construct the triton server instance. * Also contained is a Dockerfile to construct the triton server instance.
* Given a URL and quantization method (those supported by CTranslate2 i.e. `int8`, `int8_float16`, `int8_bfloat16`, `int16`, `float16` and `bfloat16`) it will download, quantize and construct the SSMT Tritom Repository in `./ssmt_triton_repo`. * Given a URL and quantization method (those supported by CTranslate2 i.e. `int8`, `int8_float16`, `int8_bfloat16`, `int16`, `float16` and `bfloat16`) it will download, quantize and construct the SSMT Triton Repository in `./ssmt_triton_repo`.
* Dynamic batching and caching is supported and enabled by default. * Dynamic batching and caching is supported and enabled by default.
* The repository folder can me mounted to the dhruva ssmt triton server on `/models` and can be queried via a client. * The repository folder can me mounted to the dhruva ssmt triton server on `/models` and can be queried via a client.
* Sample client code is also given as an ipython notebook. * Sample client code is also given as an ipython notebook.
* The `model.zip` package needs to contain a folder of `.pt` and `.src` files named `1` through `9` with each file corresponding to the following mapping: * The `model.zip` package needs to contain a folder of `.pt` and `.src` files named `1` through `9` with each file corresponding to the following mapping: `{'en-hi': 1, 'hi-en': 2, 'en-te': 3, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}`
`{'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9}`
## Architecture of the pipeline ## Architecture of the pipeline
...@@ -32,6 +31,7 @@ The pipeline consists of 4 components, executed in order: ...@@ -32,6 +31,7 @@ The pipeline consists of 4 components, executed in order:
* Model Demuxer - This model is CPU only and depending on the language pair requested, queues up an `InferenceRequest` for the appropriate model and returns it as the response. * Model Demuxer - This model is CPU only and depending on the language pair requested, queues up an `InferenceRequest` for the appropriate model and returns it as the response.
* Model - This is a GPU based model and it processes the tokenized text and returns the final form of the translated text to the caller. * Model - This is a GPU based model and it processes the tokenized text and returns the final form of the translated text to the caller.
* Pipeline - This is an ensemble model that wraps the above three components together and is the one meant to be exposed to the client. * Pipeline - This is an ensemble model that wraps the above three components together and is the one meant to be exposed to the client.
The exact specifications of the model inputs and outputs can be looked at in the corresponding `config.pbtxt` files. The exact specifications of the model inputs and outputs can be looked at in the corresponding `config.pbtxt` files.
One can construct the triton repo like so: One can construct the triton repo like so:
```bash ```bash
......
...@@ -7,7 +7,7 @@ class TritonPythonModel: ...@@ -7,7 +7,7 @@ class TritonPythonModel:
self.model_config = json.loads(args["model_config"]) self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT") target_config = pb_utils.get_output_config_by_name(self.model_config, "OUTPUT_TEXT")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"]) self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9} self.lang_pair_map = {'en-hi': 1, 'hi-en': 2, 'en-te': 3, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}
async def execute(self, requests): async def execute(self, requests):
responses = [] responses = []
......
...@@ -11,7 +11,7 @@ class TritonPythonModel: ...@@ -11,7 +11,7 @@ class TritonPythonModel:
self.model_config = json.loads(args["model_config"]) self.model_config = json.loads(args["model_config"])
target_config = pb_utils.get_output_config_by_name(self.model_config, "INPUT_TEXT_TOKENIZED") target_config = pb_utils.get_output_config_by_name(self.model_config, "INPUT_TEXT_TOKENIZED")
self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"]) self.target_dtype = pb_utils.triton_string_to_numpy(target_config["data_type"])
self.lang_pair_map = {'eng-hin': 1, 'hin-eng': 2, 'eng-tel': 3, 'tel-eng': 4, 'hin-tel': 6, 'tel-hin': 7, 'eng-guj': 8, 'guj-eng': 9} self.lang_pair_map = {'en-hi': 1, 'hi-en': 2, 'en-te': 3, 'te-en': 4, 'hi-te': 6, 'te-hi': 7, 'en-gu': 8, 'gu-en': 9}
self.bpes = {lang_pair: BPE(open(os.path.join(current_path, f'bpe_src/{model_id}.src'), encoding='utf-8')) for lang_pair, model_id in self.lang_pair_map.items()} self.bpes = {lang_pair: BPE(open(os.path.join(current_path, f'bpe_src/{model_id}.src'), encoding='utf-8')) for lang_pair, model_id in self.lang_pair_map.items()}
def execute(self, requests): def execute(self, requests):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment