Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
M
mt-model-deploy-dhruva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Environments
Packages & Registries
Packages & Registries
Package Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ssmt
mt-model-deploy-dhruva
Commits
d0049da2
Commit
d0049da2
authored
Sep 04, 2023
by
Nikhilesh Bhatnagar
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Formatting pass.
parent
f61cdc30
Changes
11
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
437 additions
and
113 deletions
+437
-113
.gitignore
.gitignore
+0
-1
triton_models/demuxer/1/model.py
triton_models/demuxer/1/model.py
+63
-3
triton_models/demuxer/config.pbtxt
triton_models/demuxer/config.pbtxt
+1
-1
triton_models/model_ct2/1/model.py
triton_models/model_ct2/1/model.py
+61
-13
triton_models/model_ct2/config.pbtxt
triton_models/model_ct2/config.pbtxt
+1
-1
triton_models/model_onmt/1/model.py
triton_models/model_onmt/1/model.py
+114
-13
triton_models/model_onmt/config.pbtxt
triton_models/model_onmt/config.pbtxt
+1
-1
triton_models/nmt/config.pbtxt
triton_models/nmt/config.pbtxt
+1
-1
triton_models/tokenizer/1/apply_bpe.py
triton_models/tokenizer/1/apply_bpe.py
+125
-74
triton_models/tokenizer/1/model.py
triton_models/tokenizer/1/model.py
+69
-4
triton_models/tokenizer/config.pbtxt
triton_models/tokenizer/config.pbtxt
+1
-1
No files found.
.gitignore
View file @
d0049da2
ssmt_triton_repo
himangy_triton_repo
\ No newline at end of file
triton_models/demuxer/1/model.py
View file @
d0049da2
...
...
@@ -3,7 +3,67 @@ import numpy
import
asyncio
import
triton_python_backend_utils
as
pb_utils
class
TritonPythonModel
:
def
initialize
(
self
,
args
):
self
.
target_dtype
=
pb_utils
.
triton_string_to_numpy
(
pb_utils
.
get_output_config_by_name
(
json
.
loads
(
args
[
'model_config'
]),
'OUTPUT_TEXT'
)[
'data_type'
])
async
def
execute
(
self
,
requests
):
return
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
'OUTPUT_TEXT'
,
numpy
.
array
([[
pb_utils
.
get_output_tensor_by_name
(
result
,
'OUTPUT_SENT'
).
as_numpy
()[
0
,
0
].
decode
(
'utf-8'
)]
for
result
in
(
await
asyncio
.
gather
(
*
awaits
))],
dtype
=
self
.
target_dtype
))])
for
awaits
in
[[
pb_utils
.
InferenceRequest
(
model_name
=
f"himangy-
{
input_language_id
[
0
].
decode
(
'utf-8'
)
}
-
{
output_language_id
[
0
].
decode
(
'utf-8'
)
}
"
,
requested_output_names
=
[
'OUTPUT_SENT'
],
inputs
=
[
pb_utils
.
Tensor
(
'INPUT_SENT_TOKENIZED'
,
numpy
.
array
([[
input_text_tokenized
[
0
].
decode
(
'utf-8'
)]],
dtype
=
'object'
))]).
async_exec
()
for
input_text_tokenized
,
input_language_id
,
output_language_id
in
zip
(
pb_utils
.
get_input_tensor_by_name
(
request
,
'INPUT_TEXT_TOKENIZED'
).
as_numpy
(),
pb_utils
.
get_input_tensor_by_name
(
request
,
'INPUT_LANGUAGE_ID'
).
as_numpy
(),
pb_utils
.
get_input_tensor_by_name
(
request
,
'OUTPUT_LANGUAGE_ID'
).
as_numpy
())]
for
request
in
requests
]]
def
finalize
(
self
):
pass
\ No newline at end of file
def
initialize
(
self
,
args
):
self
.
target_dtype
=
pb_utils
.
triton_string_to_numpy
(
pb_utils
.
get_output_config_by_name
(
json
.
loads
(
args
[
"model_config"
]),
"OUTPUT_TEXT"
)[
"data_type"
]
)
async
def
execute
(
self
,
requests
):
return
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"OUTPUT_TEXT"
,
numpy
.
array
(
[
[
pb_utils
.
get_output_tensor_by_name
(
result
,
"OUTPUT_SENT"
)
.
as_numpy
()[
0
,
0
]
.
decode
(
"utf-8"
)
]
for
result
in
(
await
asyncio
.
gather
(
*
awaits
))
],
dtype
=
self
.
target_dtype
,
),
)
]
)
for
awaits
in
[
[
pb_utils
.
InferenceRequest
(
model_name
=
f"himangy-
{
input_language_id
[
0
].
decode
(
'utf-8'
)
}
-
{
output_language_id
[
0
].
decode
(
'utf-8'
)
}
"
,
requested_output_names
=
[
"OUTPUT_SENT"
],
inputs
=
[
pb_utils
.
Tensor
(
"INPUT_SENT_TOKENIZED"
,
numpy
.
array
(
[[
input_text_tokenized
[
0
].
decode
(
"utf-8"
)]],
dtype
=
"object"
,
),
)
],
).
async_exec
()
for
input_text_tokenized
,
input_language_id
,
output_language_id
in
zip
(
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_TEXT_TOKENIZED"
).
as_numpy
(),
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_LANGUAGE_ID"
).
as_numpy
(),
pb_utils
.
get_input_tensor_by_name
(
request
,
"OUTPUT_LANGUAGE_ID"
).
as_numpy
(),
)
]
for
request
in
requests
]
]
def
finalize
(
self
):
pass
triton_models/demuxer/config.pbtxt
View file @
d0049da2
...
...
@@ -39,4 +39,4 @@ instance_group [
count: 1
kind: KIND_CPU
}
]
\ No newline at end of file
]
triton_models/model_ct2/1/model.py
View file @
d0049da2
...
...
@@ -5,27 +5,75 @@ from itertools import islice
from
ctranslate2
import
Translator
import
triton_python_backend_utils
as
pb_utils
class
TritonPythonModel
:
def
initialize
(
self
,
args
):
current_path
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
self
.
source_lang
,
self
.
target_lang
=
input_lang
,
output_lang
self
.
model_config
=
json
.
loads
(
args
[
"model_config"
])
self
.
device_id
=
int
(
json
.
loads
(
args
[
'model_instance_device_id'
]))
target_config
=
pb_utils
.
get_output_config_by_name
(
self
.
model_config
,
"OUTPUT_SENT"
)
self
.
device_id
=
int
(
json
.
loads
(
args
[
"model_instance_device_id"
]))
target_config
=
pb_utils
.
get_output_config_by_name
(
self
.
model_config
,
"OUTPUT_SENT"
)
self
.
target_dtype
=
pb_utils
.
triton_string_to_numpy
(
target_config
[
"data_type"
])
try
:
self
.
translator
=
Translator
(
f"
{
os
.
path
.
join
(
current_path
,
'translator'
)
}
"
,
device
=
"cuda"
,
intra_threads
=
1
,
inter_threads
=
1
,
device_index
=
[
self
.
device_id
])
except
:
self
.
translator
=
Translator
(
f"
{
os
.
path
.
join
(
current_path
,
'translator'
)
}
"
,
device
=
"cpu"
,
intra_threads
=
4
)
try
:
self
.
translator
=
Translator
(
f"
{
os
.
path
.
join
(
current_path
,
'translator'
)
}
"
,
device
=
"cuda"
,
intra_threads
=
1
,
inter_threads
=
1
,
device_index
=
[
self
.
device_id
],
)
except
:
self
.
translator
=
Translator
(
f"
{
os
.
path
.
join
(
current_path
,
'translator'
)
}
"
,
device
=
"cpu"
,
intra_threads
=
4
,
)
def
clean_output
(
self
,
text
):
text
=
text
.
replace
(
'@@ '
,
''
)
text
=
text
.
replace
(
'
\u200c
'
,
''
)
if
text
.
startswith
(
'<to-gu> '
):
text
=
text
[
8
:]
if
text
.
endswith
(
' <to-gu>'
):
text
=
text
[:
-
8
]
text
=
text
.
replace
(
"@@ "
,
""
)
text
=
text
.
replace
(
"
\u200c
"
,
""
)
if
text
.
startswith
(
"<to-gu> "
):
text
=
text
[
8
:]
if
text
.
endswith
(
" <to-gu>"
):
text
=
text
[:
-
8
]
return
text
def
execute
(
self
,
requests
):
source_list
=
[
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_SENT_TOKENIZED"
)
for
request
in
requests
]
source_list
=
[
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_SENT_TOKENIZED"
)
for
request
in
requests
]
bsize_list
=
[
source
.
as_numpy
().
shape
[
0
]
for
source
in
source_list
]
src_sentences
=
[
s
[
0
].
decode
(
'utf-8'
).
strip
().
split
(
' '
)
for
source
in
source_list
for
s
in
source
.
as_numpy
()]
tgt_sentences
=
[
self
.
clean_output
(
' '
.
join
(
result
.
hypotheses
[
0
]))
for
result
in
self
.
translator
.
translate_iterable
(
src_sentences
,
max_batch_size
=
128
,
max_input_length
=
100
,
max_decoding_length
=
100
)]
responses
=
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"OUTPUT_SENT"
,
numpy
.
array
([[
s
]
for
s
in
islice
(
tgt_sentences
,
bsize
)],
dtype
=
'object'
).
astype
(
self
.
target_dtype
))])
for
bsize
in
bsize_list
]
src_sentences
=
[
s
[
0
].
decode
(
"utf-8"
).
strip
().
split
(
" "
)
for
source
in
source_list
for
s
in
source
.
as_numpy
()
]
tgt_sentences
=
[
self
.
clean_output
(
" "
.
join
(
result
.
hypotheses
[
0
]))
for
result
in
self
.
translator
.
translate_iterable
(
src_sentences
,
max_batch_size
=
128
,
max_input_length
=
100
,
max_decoding_length
=
100
,
)
]
responses
=
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"OUTPUT_SENT"
,
numpy
.
array
(
[[
s
]
for
s
in
islice
(
tgt_sentences
,
bsize
)],
dtype
=
"object"
).
astype
(
self
.
target_dtype
),
)
]
)
for
bsize
in
bsize_list
]
return
responses
def
finalize
(
self
):
self
.
translator
.
unload_model
()
\ No newline at end of file
def
finalize
(
self
):
self
.
translator
.
unload_model
()
triton_models/model_ct2/config.pbtxt
View file @
d0049da2
...
...
@@ -29,4 +29,4 @@ instance_group [
response_cache {
enable: true
}
\ No newline at end of file
}
triton_models/model_onmt/1/model.py
View file @
d0049da2
...
...
@@ -6,27 +6,128 @@ from argparse import Namespace
import
triton_python_backend_utils
as
pb_utils
from
onmt.translate.translator
import
build_translator
class
TritonPythonModel
:
def
initialize
(
self
,
args
):
current_path
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
self
.
source_lang
,
self
.
target_lang
=
input_lang
,
output_lang
self
.
model_config
=
json
.
loads
(
args
[
"model_config"
])
self
.
device_id
=
int
(
json
.
loads
(
args
[
'model_instance_device_id'
]))
target_config
=
pb_utils
.
get_output_config_by_name
(
self
.
model_config
,
"OUTPUT_SENT"
)
self
.
device_id
=
int
(
json
.
loads
(
args
[
"model_instance_device_id"
]))
target_config
=
pb_utils
.
get_output_config_by_name
(
self
.
model_config
,
"OUTPUT_SENT"
)
self
.
target_dtype
=
pb_utils
.
triton_string_to_numpy
(
target_config
[
"data_type"
])
try
:
self
.
translator
=
build_translator
(
Namespace
(
tgt_prefix
=
False
,
alpha
=
0.0
,
batch_type
=
'sents'
,
beam_size
=
5
,
beta
=-
0.0
,
block_ngram_repeat
=
0
,
coverage_penalty
=
'none'
,
data_type
=
'text'
,
dump_beam
=
''
,
fp32
=
True
,
gpu
=
self
.
device_id
,
ignore_when_blocking
=
[],
length_penalty
=
'none'
,
max_length
=
100
,
max_sent_length
=
None
,
min_length
=
0
,
models
=
[
f"
{
os
.
path
.
join
(
current_path
,
'translator.pt'
)
}
"
],
n_best
=
1
,
output
=
'/dev/null'
,
phrase_table
=
''
,
random_sampling_temp
=
1.0
,
random_sampling_topk
=
1
,
ratio
=-
0.0
,
replace_unk
=
False
,
report_align
=
False
,
report_time
=
False
,
seed
=
829
,
stepwise_penalty
=
False
,
tgt
=
None
,
verbose
=
False
),
report_score
=
False
)
except
:
self
.
translator
=
build_translator
(
Namespace
(
tgt_prefix
=
False
,
alpha
=
0.0
,
batch_type
=
'sents'
,
beam_size
=
5
,
beta
=-
0.0
,
block_ngram_repeat
=
0
,
coverage_penalty
=
'none'
,
data_type
=
'text'
,
dump_beam
=
''
,
fp32
=
True
,
gpu
=-
1
,
ignore_when_blocking
=
[],
length_penalty
=
'none'
,
max_length
=
100
,
max_sent_length
=
None
,
min_length
=
0
,
models
=
[
f"
{
os
.
path
.
join
(
current_path
,
'translator.pt'
)
}
"
],
n_best
=
1
,
output
=
'/dev/null'
,
phrase_table
=
''
,
random_sampling_temp
=
1.0
,
random_sampling_topk
=
1
,
ratio
=-
0.0
,
replace_unk
=
False
,
report_align
=
False
,
report_time
=
False
,
seed
=
829
,
stepwise_penalty
=
False
,
tgt
=
None
,
verbose
=
False
),
report_score
=
False
)
try
:
self
.
translator
=
build_translator
(
Namespace
(
tgt_prefix
=
False
,
alpha
=
0.0
,
batch_type
=
"sents"
,
beam_size
=
5
,
beta
=-
0.0
,
block_ngram_repeat
=
0
,
coverage_penalty
=
"none"
,
data_type
=
"text"
,
dump_beam
=
""
,
fp32
=
True
,
gpu
=
self
.
device_id
,
ignore_when_blocking
=
[],
length_penalty
=
"none"
,
max_length
=
100
,
max_sent_length
=
None
,
min_length
=
0
,
models
=
[
f"
{
os
.
path
.
join
(
current_path
,
'translator.pt'
)
}
"
],
n_best
=
1
,
output
=
"/dev/null"
,
phrase_table
=
""
,
random_sampling_temp
=
1.0
,
random_sampling_topk
=
1
,
ratio
=-
0.0
,
replace_unk
=
False
,
report_align
=
False
,
report_time
=
False
,
seed
=
829
,
stepwise_penalty
=
False
,
tgt
=
None
,
verbose
=
False
,
),
report_score
=
False
,
)
except
:
self
.
translator
=
build_translator
(
Namespace
(
tgt_prefix
=
False
,
alpha
=
0.0
,
batch_type
=
"sents"
,
beam_size
=
5
,
beta
=-
0.0
,
block_ngram_repeat
=
0
,
coverage_penalty
=
"none"
,
data_type
=
"text"
,
dump_beam
=
""
,
fp32
=
True
,
gpu
=-
1
,
ignore_when_blocking
=
[],
length_penalty
=
"none"
,
max_length
=
100
,
max_sent_length
=
None
,
min_length
=
0
,
models
=
[
f"
{
os
.
path
.
join
(
current_path
,
'translator.pt'
)
}
"
],
n_best
=
1
,
output
=
"/dev/null"
,
phrase_table
=
""
,
random_sampling_temp
=
1.0
,
random_sampling_topk
=
1
,
ratio
=-
0.0
,
replace_unk
=
False
,
report_align
=
False
,
report_time
=
False
,
seed
=
829
,
stepwise_penalty
=
False
,
tgt
=
None
,
verbose
=
False
,
),
report_score
=
False
,
)
def
clean_output
(
self
,
text
):
text
=
text
.
replace
(
'@@ '
,
''
)
text
=
text
.
replace
(
'
\u200c
'
,
''
)
if
text
.
startswith
(
'<to-gu> '
):
text
=
text
[
8
:]
if
text
.
endswith
(
' <to-gu>'
):
text
=
text
[:
-
8
]
text
=
text
.
replace
(
"@@ "
,
""
)
text
=
text
.
replace
(
"
\u200c
"
,
""
)
if
text
.
startswith
(
"<to-gu> "
):
text
=
text
[
8
:]
if
text
.
endswith
(
" <to-gu>"
):
text
=
text
[:
-
8
]
return
text
def
execute
(
self
,
requests
):
source_list
=
[
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_SENT_TOKENIZED"
)
for
request
in
requests
]
source_list
=
[
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_SENT_TOKENIZED"
)
for
request
in
requests
]
bsize_list
=
[
source
.
as_numpy
().
shape
[
0
]
for
source
in
source_list
]
src_sentences
=
[
s
[
0
].
decode
(
'utf-8'
).
strip
().
split
(
' '
)
for
source
in
source_list
for
s
in
source
.
as_numpy
()]
tgt_sentences
=
[
self
.
clean_output
(
result
[
0
])
for
result
in
self
.
translator
.
translate
(
src_sentences
,
batch_size
=
128
)[
1
]]
responses
=
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"OUTPUT_SENT"
,
numpy
.
array
([[
s
]
for
s
in
islice
(
tgt_sentences
,
bsize
)],
dtype
=
'object'
).
astype
(
self
.
target_dtype
))])
for
bsize
in
bsize_list
]
src_sentences
=
[
s
[
0
].
decode
(
"utf-8"
).
strip
().
split
(
" "
)
for
source
in
source_list
for
s
in
source
.
as_numpy
()
]
tgt_sentences
=
[
self
.
clean_output
(
result
[
0
])
for
result
in
self
.
translator
.
translate
(
src_sentences
,
batch_size
=
128
)[
1
]
]
responses
=
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"OUTPUT_SENT"
,
numpy
.
array
(
[[
s
]
for
s
in
islice
(
tgt_sentences
,
bsize
)],
dtype
=
"object"
).
astype
(
self
.
target_dtype
),
)
]
)
for
bsize
in
bsize_list
]
return
responses
def
finalize
(
self
):
del
self
.
translator
\ No newline at end of file
def
finalize
(
self
):
del
self
.
translator
triton_models/model_onmt/config.pbtxt
View file @
d0049da2
...
...
@@ -29,4 +29,4 @@ instance_group [
response_cache {
enable: true
}
\ No newline at end of file
}
triton_models/nmt/config.pbtxt
View file @
d0049da2
...
...
@@ -75,4 +75,4 @@ ensemble_scheduling {
}
}
]
}
\ No newline at end of file
}
triton_models/tokenizer/1/apply_bpe.py
View file @
d0049da2
This diff is collapsed.
Click to expand it.
triton_models/tokenizer/1/model.py
View file @
d0049da2
...
...
@@ -6,8 +6,73 @@ from .apply_bpe import BPE
from
ilstokenizer
import
tokenizer
import
triton_python_backend_utils
as
pb_utils
class
TritonPythonModel
:
def
initialize
(
self
,
args
):
self
.
target_dtype
,
self
.
bpes
=
pb_utils
.
triton_string_to_numpy
(
pb_utils
.
get_output_config_by_name
(
json
.
loads
(
args
[
"model_config"
]),
"INPUT_TEXT_TOKENIZED"
)[
"data_type"
]),
{
fname
.
rsplit
(
'/'
,
maxsplit
=
1
)[
-
1
][:
-
len
(
'.src'
)]:
BPE
(
open
(
fname
,
'r'
,
encoding
=
'utf-8'
))
for
fname
in
iglob
(
f'
{
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
}
/bpe_src/*.src'
)}
def
preprocess_text
(
self
,
text
,
source_lang
,
target_lang
):
return
f"<to-gu>
{
text
}
<to-gu>"
if
source_lang
==
'en'
and
target_lang
==
'gu'
else
text
def
execute
(
self
,
requests
):
return
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"INPUT_TEXT_TOKENIZED"
,
numpy
.
array
([[
tokenized_sent
]
for
tokenized_sent
in
tokenized_sents
],
dtype
=
self
.
target_dtype
))])
for
tokenized_sents
in
((
self
.
bpes
[
f"
{
input_language_id
[
0
].
decode
(
'utf-8'
)
}
-
{
output_language_id
[
0
].
decode
(
'utf-8'
)
}
"
].
segment
(
self
.
preprocess_text
(
tokenizer
.
tokenize
(
input_text
[
0
].
decode
(
'utf-8'
).
lower
()),
input_language_id
[
0
].
decode
(
'utf-8'
),
output_language_id
[
0
].
decode
(
'utf-8'
))).
strip
()
for
input_text
,
input_language_id
,
output_language_id
in
zip
(
input_texts
.
as_numpy
(),
input_language_ids
.
as_numpy
(),
output_language_ids
.
as_numpy
()))
for
input_texts
,
input_language_ids
,
output_language_ids
in
((
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_TEXT"
),
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_LANGUAGE_ID"
),
pb_utils
.
get_input_tensor_by_name
(
request
,
"OUTPUT_LANGUAGE_ID"
))
for
request
in
requests
))]
def
finalize
(
self
):
pass
\ No newline at end of file
def
initialize
(
self
,
args
):
self
.
target_dtype
,
self
.
bpes
=
pb_utils
.
triton_string_to_numpy
(
pb_utils
.
get_output_config_by_name
(
json
.
loads
(
args
[
"model_config"
]),
"INPUT_TEXT_TOKENIZED"
)[
"data_type"
]
),
{
fname
.
rsplit
(
"/"
,
maxsplit
=
1
)[
-
1
][:
-
len
(
".src"
)]:
BPE
(
open
(
fname
,
"r"
,
encoding
=
"utf-8"
)
)
for
fname
in
iglob
(
f"
{
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
}
/bpe_src/*.src"
)
}
def
preprocess_text
(
self
,
text
,
source_lang
,
target_lang
):
return
(
f"<to-gu>
{
text
}
<to-gu>"
if
source_lang
==
"en"
and
target_lang
==
"gu"
else
text
)
def
execute
(
self
,
requests
):
return
[
pb_utils
.
InferenceResponse
(
output_tensors
=
[
pb_utils
.
Tensor
(
"INPUT_TEXT_TOKENIZED"
,
numpy
.
array
(
[[
tokenized_sent
]
for
tokenized_sent
in
tokenized_sents
],
dtype
=
self
.
target_dtype
,
),
)
]
)
for
tokenized_sents
in
(
(
self
.
bpes
[
f"
{
input_language_id
[
0
].
decode
(
'utf-8'
)
}
-
{
output_language_id
[
0
].
decode
(
'utf-8'
)
}
"
]
.
segment
(
self
.
preprocess_text
(
tokenizer
.
tokenize
(
input_text
[
0
].
decode
(
"utf-8"
).
lower
()),
input_language_id
[
0
].
decode
(
"utf-8"
),
output_language_id
[
0
].
decode
(
"utf-8"
),
)
)
.
strip
()
for
input_text
,
input_language_id
,
output_language_id
in
zip
(
input_texts
.
as_numpy
(),
input_language_ids
.
as_numpy
(),
output_language_ids
.
as_numpy
(),
)
)
for
input_texts
,
input_language_ids
,
output_language_ids
in
(
(
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_TEXT"
),
pb_utils
.
get_input_tensor_by_name
(
request
,
"INPUT_LANGUAGE_ID"
),
pb_utils
.
get_input_tensor_by_name
(
request
,
"OUTPUT_LANGUAGE_ID"
),
)
for
request
in
requests
)
)
]
def
finalize
(
self
):
pass
triton_models/tokenizer/config.pbtxt
View file @
d0049da2
...
...
@@ -39,4 +39,4 @@ instance_group [
count: 8
kind: KIND_CPU
}
]
\ No newline at end of file
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment