data2vec_audio.py 27.9 KB
Newer Older
Nikhilesh Bhatnagar's avatar
Nikhilesh Bhatnagar committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import math
from dataclasses import dataclass, field
from typing import Optional

from omegaconf import II

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist

from fairseq.modules import EMAModule, EMAModuleConfig
from fairseq.data.data_utils import compute_mask_indices
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.wav2vec import (
    ConvFeatureExtractionModel,
    Wav2Vec2Config,
    TransformerEncoder,
)
from fairseq.modules import (
    GradMultiply,
    LayerNorm,
    GumbelVectorQuantizer,
)
from fairseq.utils import buffered_arange, index_put, is_xla_tensor
from .utils import index_put_scale
from fast_pytorch_kmeans import KMeans


logger = logging.getLogger(__name__)


@dataclass
class Data2VecAudioConfig(Wav2Vec2Config):

    loss_beta: float = field(
        default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"}
    )
    loss_scale: Optional[float] = field(
        default=None,
        metadata={
            "help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)"
        },
    )
    average_top_k_layers: int = field(
        default=8, metadata={"help": "how many layers to average"}
    )

    layer_norm_target_layer: bool = False
    instance_norm_target_layer: bool = False
    instance_norm_targets: bool = False
    layer_norm_targets: bool = False
    batch_norm_target_layer: bool = False
    group_norm_target_layer: bool = False

    ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"})
    ema_end_decay: float = field(
        default=0.9999, metadata={"help": "final ema decay rate"}
    )

    # when to finish annealing ema decay rate
    ema_anneal_end_step: int = II("optimization.max_update")

    ema_transformer_only: bool = field(
        default=True,
        metadata={"help": "whether to momentum update only the transformer"},
    )
    ema_layers_only: bool = field(
        default=True,
        metadata={"help": "whether to momentum update only the transformer layers"},
    )

    max_update: int = II("optimization.max_update")

    min_target_var: float = field(
        default=0.1, metadata={"help": "stop training if target var falls below this"}
    )
    min_pred_var: float = field(
        default=0.01,
        metadata={"help": "stop training if prediction var falls below this"},
    )


def get_annealed_rate(start, end, curr_step, total_steps):
    r = end - start
    pct_remaining = 1 - curr_step / total_steps
    return end - r * pct_remaining


@register_model("data2vec_audio", dataclass=Data2VecAudioConfig)
class Data2VecAudioModel(BaseFairseqModel):
    def __init__(self, cfg: Data2VecAudioConfig):
        super().__init__()
        self.cfg = cfg

        feature_enc_layers = eval(cfg.conv_feature_layers)
        self.extractor_embed = feature_enc_layers[-1][0]

        self.ema = None
        self.embed = cfg.encoder_embed_dim

        self.average_top_k_layers = cfg.average_top_k_layers
        self.loss_beta = cfg.loss_beta
        self.loss_scale = cfg.loss_scale

        self.feature_extractor = ConvFeatureExtractionModel(
            conv_layers=feature_enc_layers,
            dropout=0.0,
            mode=cfg.extractor_mode,
            conv_bias=cfg.conv_bias,
        )

        self.post_extract_proj = nn.Linear(self.extractor_embed, cfg.encoder_embed_dim)

        self.mask_prob = cfg.mask_prob
        self.mask_selection = cfg.mask_selection
        self.mask_other = cfg.mask_other
        self.mask_length = cfg.mask_length
        self.no_mask_overlap = cfg.no_mask_overlap
        self.mask_min_space = cfg.mask_min_space

        self.mask_channel_prob = cfg.mask_channel_prob
        self.mask_channel_before = cfg.mask_channel_before
        self.mask_channel_selection = cfg.mask_channel_selection
        self.mask_channel_other = cfg.mask_channel_other
        self.mask_channel_length = cfg.mask_channel_length
        self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
        self.mask_channel_min_space = cfg.mask_channel_min_space

        self.dropout_input = nn.Dropout(cfg.dropout_input)
        self.dropout_features = nn.Dropout(cfg.dropout_features)

        self.feature_grad_mult = cfg.feature_grad_mult

        self.n_negatives = cfg.num_negatives
        self.cross_sample_negatives = cfg.cross_sample_negatives

        vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.final_proj_dim
        self.quantizer = GumbelVectorQuantizer(
                dim=self.extractor_embed,
                num_vars=cfg.latent_vars,
                temp=cfg.latent_temp,
                groups=cfg.latent_groups,
                combine_groups=False,
                vq_dim=vq_dim,
                time_first=True,
                weight_proj_depth=cfg.quantizer_depth,
                weight_proj_factor=cfg.quantizer_factor,
        )
        self.project_q = nn.Linear(vq_dim, cfg.final_proj_dim)

        self.mask_emb = nn.Parameter(
            torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
        )

        self.encoder = TransformerEncoder(cfg)
        self.layer_norm = LayerNorm(self.extractor_embed)

        self.final_proj = nn.Linear(self.embed, self.embed)
        self.contr_proj = nn.Linear(self.embed, cfg.final_proj_dim)

        self.num_updates = 0

    def make_ema_teacher(self):
        ema_config = EMAModuleConfig(
            ema_decay=self.cfg.ema_decay,
            ema_fp32=True,
        )
        skip_keys = set()
        if self.cfg.ema_layers_only:
            self.cfg.ema_transformer_only = True
            for k, _ in self.encoder.pos_conv.named_parameters():
                skip_keys.add(f"pos_conv.{k}")

        self.ema = EMAModule(
            self.encoder if self.cfg.ema_transformer_only else self,
            ema_config,
            skip_keys=skip_keys,
        )

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)

        if self.ema is None and self.final_proj is not None:
            logger.info(f"making ema teacher")
            self.make_ema_teacher()
        elif self.training and self.ema is not None:
            if self.cfg.ema_decay != self.cfg.ema_end_decay:
                if num_updates >= self.cfg.ema_anneal_end_step:
                    decay = self.cfg.ema_end_decay
                else:
                    decay = get_annealed_rate(
                        self.cfg.ema_decay,
                        self.cfg.ema_end_decay,
                        num_updates,
                        self.cfg.ema_anneal_end_step,
                    )
                self.ema.set_decay(decay)
            if self.ema.get_decay() < 1:
                self.ema.step(self.encoder if self.cfg.ema_transformer_only else self)

        self.num_updates = num_updates

    def state_dict(self, destination=None, prefix="", keep_vars=False):
        state = super().state_dict(destination, prefix, keep_vars)

        if self.ema is not None:
            state[prefix + "_ema"] = self.ema.fp32_params

        return state

    def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
        if self.ema is not None:
            k = prefix + "_ema"
            assert k in state_dict
            self.ema.restore(state_dict[k], True)
            del state_dict[k]
        return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)

    @classmethod
    def build_model(cls, cfg: Data2VecAudioConfig, task=None):
        """Build a new model instance."""

        return cls(cfg)

    def apply_mask(
        self,
        x,
        padding_mask,
        mask_indices=None,
        mask_channel_indices=None,
    ):
        B, T, C = x.shape

        if self.mask_channel_prob > 0 and self.mask_channel_before:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_channel_prob,
                self.mask_channel_length,
                self.mask_channel_selection,
                self.mask_channel_other,
                no_overlap=self.no_mask_channel_overlap,
                min_space=self.mask_channel_min_space,
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices)
                .to(x.device)
                .unsqueeze(1)
                .expand(-1, T, -1)
            )
            x[mask_channel_indices] = 0

        if self.mask_prob > 0:
            if mask_indices is None:
                mask_indices = compute_mask_indices(
                    (B, T),
                    padding_mask,
                    self.mask_prob,
                    self.mask_length,
                    self.mask_selection,
                    self.mask_other,
                    min_masks=1,
                    no_overlap=self.no_mask_overlap,
                    min_space=self.mask_min_space,
                    require_same_masks=self.cfg.require_same_masks,
                    mask_dropout=self.cfg.mask_dropout,
                )
                mask_indices = torch.from_numpy(mask_indices).to(x.device)
            x = index_put(x, mask_indices, self.mask_emb)
        else:
            mask_indices = None

        if self.mask_channel_prob > 0 and not self.mask_channel_before:
            if mask_channel_indices is None:
                mask_channel_indices = compute_mask_indices(
                    (B, C),
                    None,
                    self.mask_channel_prob,
                    self.mask_channel_length,
                    self.mask_channel_selection,
                    self.mask_channel_other,
                    no_overlap=self.no_mask_channel_overlap,
                    min_space=self.mask_channel_min_space,
                )
                mask_channel_indices = (
                    torch.from_numpy(mask_channel_indices)
                    .to(x.device)
                    .unsqueeze(1)
                    .expand(-1, T, -1)
                )
            x = index_put(x, mask_channel_indices, 0)

        return x, mask_indices

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            return torch.floor((input_length - kernel_size) / stride + 1)

        conv_cfg_list = eval(self.cfg.conv_feature_layers)

        for i in range(len(conv_cfg_list)):
            input_lengths = _conv_out_length(
                input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
            )

        return input_lengths.to(torch.long)


    def compute_preds_scale(self, x, y, negatives, filter_negs, sf=0.3):

        logit_temp=0.1
        neg_is_pos = (y == negatives).all(-1)
        y = y.unsqueeze(0)
        targets = torch.cat([y, negatives], dim=0)

        logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1)
        logits = logits / logit_temp
        logits = logits.type_as(x)

        if is_xla_tensor(logits) or neg_is_pos.any():
            if not hasattr(self, "_inftensor"):
                fillval = -float(2**30)
                self._inftensor = (
                    torch.tensor(fillval).to(x.device)
                    if is_xla_tensor(logits)
                    else float("-inf")
                )
            logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor)
            
            # applying the scaling factor for the logits corresponding to filtered negatives
            logits[1:] = index_put_scale(logits[1:], filter_negs, sf)

        return logits

    def get_logits(self, logits):
        logits = logits.transpose(0, 2)
        logits = logits.reshape(-1, logits.size(-1))
        return logits

    def get_targets(self, x):
        return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long)

    def sample_negatives(self, y, num, padding_count=None):

        if self.n_negatives == 0 and self.cross_sample_negatives == 0:
            return y.new(0)

        bsz, tsz, fsz = y.shape
        y = y.view(-1, fsz)  # BTC => (BxT)C

        # FIXME: what happens if padding_count is specified?
        cross_high = tsz * bsz
        high = tsz - (padding_count or 0)
        with torch.no_grad():
            assert high > 1, f"{bsz,tsz,fsz}"

            if self.n_negatives > 0:
                tszs = (
                    buffered_arange(num)
                    .unsqueeze(-1)
                    .expand(-1, self.n_negatives)
                    .flatten()
                )

                neg_idxs = torch.randint(
                    low=0, high=high - 1, size=(bsz, self.n_negatives * num)
                )
                neg_idxs[neg_idxs >= tszs] += 1

            if self.cross_sample_negatives > 0:
                tszs = (
                    buffered_arange(num)
                    .unsqueeze(-1)
                    .expand(-1, self.cross_sample_negatives)
                    .flatten()
                )

                cross_neg_idxs = torch.randint(
                    low=0,
                    high=cross_high - 1,
                    size=(bsz, self.cross_sample_negatives * num),
                )
                cross_neg_idxs[cross_neg_idxs >= tszs] += 1

        if self.n_negatives > 0:
            neg_idxs = neg_idxs + (torch.arange(bsz).unsqueeze(1) * high)
        else:
            neg_idxs = cross_neg_idxs

        if self.cross_sample_negatives > 0 and self.n_negatives > 0:
            neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1)

        negs = y[neg_idxs.view(-1)]
        negs = negs.view(
            bsz, num, self.n_negatives + self.cross_sample_negatives, fsz
        ).permute(
            2, 0, 1, 3
        )  # to NxBxTxC
        return negs, neg_idxs


    def forward(
        self,
        source,
        padding_mask=None,
        mask=True,
        features_only=False,
        layer=None,
        mask_indices=None,
        mask_channel_indices=None,
        padding_count=None,
    ):

        # extracting both the source and the augmented audios from source
        source_audios = source[0]
        aug_audios = source[0]

        if self.feature_grad_mult > 0:
            features = self.feature_extractor(source_audios) #features
            aug_features = self.feature_extractor(aug_audios)
            if self.feature_grad_mult != 1.0:
                features = GradMultiply.apply(features, self.feature_grad_mult)
        else:
            with torch.no_grad():
                features = self.feature_extractor(source_audios) #features
                aug_features = self.feature_extractor(aug_audios)

        features_pen = features.float().pow(2).mean()

        features = features.transpose(1, 2)
        aug_features = aug_features.transpose(1, 2)

        features = self.layer_norm(features)
        aug_features = self.layer_norm(aug_features)

        unmasked_features = features.clone()
        aug_unmasked_features = aug_features.clone()

        orig_padding_mask = padding_mask

        if padding_mask is not None and padding_mask.any():
            input_lengths = (1 - padding_mask.long()).sum(-1)
            # apply conv formula to get real output_lengths
            output_lengths = self._get_feat_extract_output_lengths(input_lengths)

            padding_mask = torch.zeros(
                features.shape[:2], dtype=features.dtype, device=features.device
            )

            # these two operations makes sure that all values
            # before the output lengths indices are attended to
            padding_mask[
                (
                    torch.arange(padding_mask.shape[0], device=padding_mask.device),
                    output_lengths - 1,
                )
            ] = 1
            padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
        else:
            padding_mask = None

        if self.post_extract_proj is not None:
            features = self.post_extract_proj(features)
            aug_features = self.post_extract_proj(aug_features)

        pre_encoder_features = None
        if self.cfg.ema_transformer_only:
            pre_encoder_features = features.clone()
            pre_encoder_aug_features = aug_features.clone()

        features = self.dropout_input(features)
        aug_features = self.dropout_input(aug_features)

        unmasked_features = self.dropout_features(unmasked_features)
        aug_unmasked_features = self.dropout_features(aug_unmasked_features)

        if mask:
            x, mask_indices = self.apply_mask(
                features,
                padding_mask,
                mask_indices=mask_indices,
                mask_channel_indices=mask_channel_indices,
            )
            # applying the same mask (as used for the original sample features) over the augmented sample features
            # this consistency is needed as we are going to compute cross-contrastive losses as well
            x_aug = index_put(aug_features, mask_indices, self.mask_emb)
            if not is_xla_tensor(x) and mask_indices is not None:
                # tpu-comment: reducing the size in a dynamic way causes
                # too many recompilations on xla.
                orig_mregion = unmasked_features[mask_indices].view(
                    unmasked_features.size(0), -1, unmasked_features.size(-1)
                )
                orig_mregion_aug = aug_unmasked_features[mask_indices].view(
                    aug_unmasked_features.size(0), -1, aug_unmasked_features.size(-1)
                )
            else:
                orig_mregion = unmasked_features
                orig_mregion_aug = aug_unmasked_features
        else:
            x = features
            x_aug = aug_features
            orig_mregion = unmasked_features
            orig_mregion_aug = aug_unmasked_features
            mask_indices = None

        if features_only == False:
            x_aug, layer_results = self.encoder(
                x_aug,
                padding_mask=padding_mask,
                layer=layer,
            )

        if features_only:
            x, layer_results = self.encoder(
                x,
                padding_mask=padding_mask,
                layer=layer,
            )
            return {
                "x": x,
                "padding_mask": padding_mask,
                "layer_results": layer_results,
            }

        result = {
            "losses": {},
        }


        q = self.quantizer(orig_mregion, produce_targets=False)
        orig_mregion = q["x"]
        num_vars = q["num_vars"]
        prob_ppl = q["prob_perplexity"]

        orig_mregion = self.project_q(orig_mregion)

        negs, neg_idxs = self.sample_negatives(
            orig_mregion,
            orig_mregion.size(1),
            padding_count=padding_count,
        )

        q_aug = self.quantizer(orig_mregion_aug, produce_targets=False)
        orig_mregion_aug = q_aug["x"]
        orig_mregion_aug = self.project_q(orig_mregion_aug)

        negs_aug, neg_aug_idxs = self.sample_negatives(
            orig_mregion_aug,
            orig_mregion_aug.size(1),
            padding_count=padding_count,
        )

        with torch.no_grad():
            self.ema.model.eval()

            if self.cfg.ema_transformer_only:
                y, layer_results = self.ema.model.extract_features(
                    pre_encoder_features,
                    padding_mask=padding_mask,
                    min_layer=self.cfg.encoder_layers - self.average_top_k_layers,
                )
                y = {
                    "x": y,
                    "padding_mask": padding_mask,
                    "layer_results": layer_results,
                }
            else:
                y = self.ema.model.extract_features(
                    source=source,
                    padding_mask=orig_padding_mask,
                    mask=False,
                )

            target_layer_results = [l[2] for l in y["layer_results"]]

            permuted = False
            if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer:
                target_layer_results = [
                    tl.permute(1, 2, 0) for tl in target_layer_results  # TBC -> BCT
                ]
                permuted = True

            if self.cfg.batch_norm_target_layer:
                target_layer_results = [
                    F.batch_norm(
                        tl.float(), running_mean=None, running_var=None, training=True
                    )
                    for tl in target_layer_results
                ]

            if self.cfg.instance_norm_target_layer:
                target_layer_results = [
                    F.instance_norm(tl.float()) for tl in target_layer_results
                ]

            if permuted:
                target_layer_results = [
                    tl.transpose(1, 2) for tl in target_layer_results  # BCT -> BTC
                ]

            if self.cfg.group_norm_target_layer:
                target_layer_results = [
                    F.layer_norm(tl.float(), tl.shape[-2:])
                    for tl in target_layer_results
                ]

            if self.cfg.layer_norm_target_layer:
                target_layer_results = [
                    F.layer_norm(tl.float(), tl.shape[-1:])
                    for tl in target_layer_results
                ]

            y = sum(target_layer_results) / len(target_layer_results)

            if self.cfg.layer_norm_targets:
                y = F.layer_norm(y.float(), y.shape[-1:])

            if self.cfg.instance_norm_targets:
                y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)

            if not permuted:
                y = y.transpose(0, 1)


        x_for_contr = x_aug[mask_indices].view(x_aug.size(0), -1, x_aug.size(-1))
        y_for_contr = y[mask_indices].view(y.size(0), -1, y.size(-1))
        x_aug = x_aug[mask_indices]
        y = y[mask_indices]
        x_aug = self.final_proj(x_aug)

        c_proj_x = self.contr_proj(x_for_contr)
        c_proj_y = self.contr_proj(y_for_contr.half())

        # Defining the k-means clustering module
        kmeans = KMeans(n_clusters=max(2, x.shape[1]//self.cfg.cluster_factor), mode='cosine', verbose=0)

        # normalize the sampled negatives of the original and the augmentation before clustering
        norm_orig_mregion = F.normalize(orig_mregion, dim=2)
        norm_orig_mregion_aug = F.normalize(orig_mregion_aug, dim=2)

        bsz, tsz, fsz = norm_orig_mregion.shape
        # pooling the normalized negatives before clustering
        data = torch.stack([norm_orig_mregion.view(-1, fsz),norm_orig_mregion_aug.view(-1, fsz)]).view(-1, fsz)
        data = data.to(torch.float)

        # clustering and obtaining the cluster IDs
        labels = kmeans.fit_predict(data)
        clus_labels, clus_labels_aug = torch.split(labels, bsz*tsz)
        clus_labels = torch.reshape(clus_labels, (bsz, tsz))
        neg_labels = clus_labels.view(-1)[neg_idxs]
        clus_labels = torch.reshape(clus_labels, (norm_orig_mregion.size(0), norm_orig_mregion.size(1), 1))
        neg_labels = neg_labels.view(norm_orig_mregion.size(0), norm_orig_mregion.size(1), self.n_negatives, 1).permute(
            2, 0, 1, 3
        )

        # filter those negatives which belong to the same cluster as the positive for the original sample
        filter_negs = (clus_labels == neg_labels).all(-1)

        clus_labels_aug = torch.reshape(clus_labels_aug, (bsz, tsz))
        neg_labels_aug = clus_labels_aug.view(-1)[neg_aug_idxs]
        clus_labels_aug = torch.reshape(clus_labels_aug, (norm_orig_mregion_aug.size(0), norm_orig_mregion_aug.size(1), 1))
        neg_labels_aug = neg_labels_aug.view(norm_orig_mregion_aug.size(0), norm_orig_mregion_aug.size(1), self.n_negatives, 1).permute(
            2, 0, 1, 3
        )

        # filter those negatives which belong to the same cluster as the positive for the original sample
        filter_negs_aug = (clus_labels_aug == neg_labels_aug).all(-1)

        # logits for cross-contrastive loss
        sims_s = self.compute_preds_scale(c_proj_x, orig_mregion, negs, filter_negs, self.cfg.scale_factor)
        logits_s = self.get_logits(sims_s)
        targets_s = self.get_targets(sims_s)

        # logits for cross-contrastive loss
        sims_t = self.compute_preds_scale(c_proj_y, orig_mregion_aug, negs_aug, filter_negs_aug, self.cfg.scale_factor)
        logits_t = self.get_logits(sims_t)
        targets_t = self.get_targets(sims_t)

        sz = x_aug.size(-1)

        if self.loss_beta == 0:
            loss_mse = F.mse_loss(x_aug.float(), y.float(), reduction="none").sum(dim=-1)
            loss_s = F.cross_entropy(logits_s, targets_s, reduction="sum")
            loss_t = F.cross_entropy(logits_t, targets_t, reduction="sum")
        else:
            loss = F.smooth_l1_loss(
                x_aug.float(), y.float(), reduction="none", beta=self.loss_beta
            ).sum(dim=-1)

        if self.loss_scale is not None:
            scale = self.loss_scale
        else:
            scale = 1 / math.sqrt(sz)
            scale_contrastive = 0.5

        result["prob_perplexity"] = prob_ppl
        result["features_pen"] = features_pen
        result["num_vars"] = num_vars

        result["losses"]["regression"] = (loss_mse.sum() * scale) + (loss_s * scale_contrastive) + (loss_t * scale_contrastive)

        result["contr_loss"] = loss_s.detach().item() + loss_t.detach().item()
        result["mse_loss"] = loss_mse.sum().detach().item()

        if "sample_size" not in result:
            result["sample_size"] = loss_mse.numel()
            result["contr_sample_size"] = targets_s.numel()

        with torch.no_grad():
            result["target_var"] = self.compute_var(y)
            result["pred_var"] = self.compute_var(x_aug.float())

        data.detach()

        if self.num_updates > 5000 and result["target_var"] < self.cfg.min_target_var:
            logger.error(
                f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
            )
            raise Exception(
                f"target var is {result['target_var'].item()} < {self.cfg.min_target_var}, exiting"
            )
        if self.num_updates > 5000 and result["pred_var"] < self.cfg.min_pred_var:
            logger.error(
                f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
            )
            raise Exception(
                f"pred var is {result['pred_var'].item()} < {self.cfg.min_pred_var}, exiting"
            )

        if self.ema is not None:
            result["ema_decay"] = self.ema.get_decay() * 1000

        return result

    def get_extra_losses(self, net_output):
        pen = []

        if "prob_perplexity" in net_output:
            pen.append(
                (net_output["num_vars"] - net_output["prob_perplexity"])
                / net_output["num_vars"]
            )

        if "features_pen" in net_output:
            pen.append(net_output["features_pen"])

        return pen

    @staticmethod
    def compute_var(y):
        y = y.view(-1, y.size(-1))
        if dist.is_initialized():
            zc = torch.tensor(y.size(0)).cuda()
            zs = y.sum(dim=0)
            zss = (y ** 2).sum(dim=0)

            dist.all_reduce(zc)
            dist.all_reduce(zs)
            dist.all_reduce(zss)

            var = zss / (zc - 1) - (zs ** 2) / (zc * (zc - 1))
            return torch.sqrt(var + 1e-6).mean()
        else:
            return torch.sqrt(y.var(dim=0) + 1e-6).mean()

    def extract_features(
        self, source, padding_mask, mask=False, layer=None
    ):
        res = self.forward(
            source,
            padding_mask,
            mask=mask,
            features_only=True,
            layer=layer,
        )
        return res

    def remove_pretraining_modules(self, last_layer=None):
        self.final_proj = None
        self.ema = None
        if last_layer is not None:
            self.encoder.layers = nn.ModuleList(
                l for i, l in enumerate(self.encoder.layers) if i <= last_layer
            )