wav2vec_u.py 22.4 KB
Newer Older
Nikhilesh Bhatnagar's avatar
Nikhilesh Bhatnagar committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from enum import Enum, auto
import math
import numpy as np
from typing import Tuple, List, Optional, Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autograd

from fairseq import checkpoint_utils, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.modules import (
    SamePad,
    TransposeLast,
)


class SegmentationType(Enum):
    NONE = auto()
    RANDOM = auto()
    UNIFORM_RANDOM = auto()
    UNIFORM_RANDOM_JOIN = auto()
    JOIN = auto()


@dataclass
class SegmentationConfig(FairseqDataclass):
    type: SegmentationType = SegmentationType.NONE
    subsample_rate: float = 0.25
    mean_pool: bool = True
    mean_pool_join: bool = False
    remove_zeros: bool = False


@dataclass
class Wav2vec_UConfig(FairseqDataclass):
    discriminator_kernel: int = 3
    discriminator_dilation: int = 1
    discriminator_dim: int = 256
    discriminator_causal: bool = True
    discriminator_linear_emb: bool = False
    discriminator_depth: int = 1
    discriminator_max_pool: bool = False
    discriminator_act_after_linear: bool = False
    discriminator_dropout: float = 0.0
    discriminator_spectral_norm: bool = False
    discriminator_weight_norm: bool = False

    generator_kernel: int = 4
    generator_dilation: int = 1
    generator_stride: int = 1
    generator_pad: int = -1
    generator_bias: bool = False
    generator_dropout: float = 0.0
    generator_batch_norm: int = 0
    generator_residual: bool = False

    blank_weight: float = 0
    blank_mode: str = "add"
    blank_is_sil: bool = False
    no_softmax: bool = False

    smoothness_weight: float = 0.0
    smoothing: float = 0.0
    smoothing_one_sided: bool = False
    gradient_penalty: float = 0.0
    probabilistic_grad_penalty_slicing: bool = False
    code_penalty: float = 0.0
    mmi_weight: float = 0.0
    target_dim: int = 64
    target_downsample_rate: int = 2
    gumbel: bool = False
    hard_gumbel: bool = True
    temp: Tuple[float, float, float] = (2, 0.1, 0.99995)
    input_dim: int = 128

    segmentation: SegmentationConfig = SegmentationConfig()


class Segmenter(nn.Module):
    cfg: SegmentationConfig

    def __init__(self, cfg: SegmentationConfig):
        super().__init__()
        self.cfg = cfg
        self.subsample_rate = cfg.subsample_rate

    def pre_segment(self, dense_x, dense_padding_mask):
        return dense_x, dense_padding_mask

    def logit_segment(self, logits, padding_mask):
        return logits, padding_mask


class RandomSegmenter(Segmenter):
    def pre_segment(self, dense_x, dense_padding_mask):
        target_num = math.ceil(dense_x.size(1) * self.subsample_rate)
        ones = torch.ones(dense_x.shape[:-1], device=dense_x.device)
        indices, _ = ones.multinomial(target_num).sort(dim=-1)
        indices_ld = indices.unsqueeze(-1).expand(-1, -1, dense_x.size(-1))
        dense_x = dense_x.gather(1, indices_ld)
        dense_padding_mask = dense_padding_mask.gather(1, index=indices)
        return dense_x, dense_padding_mask


class UniformRandomSegmenter(Segmenter):
    def pre_segment(self, dense_x, dense_padding_mask):
        bsz, tsz, fsz = dense_x.shape

        target_num = math.ceil(tsz * self.subsample_rate)

        rem = tsz % target_num

        if rem > 0:
            dense_x = F.pad(dense_x, [0, 0, 0, target_num - rem])
            dense_padding_mask = F.pad(
                dense_padding_mask, [0, target_num - rem], value=True
            )

        dense_x = dense_x.view(bsz, target_num, -1, fsz)
        dense_padding_mask = dense_padding_mask.view(bsz, target_num, -1)

        if self.cfg.mean_pool:
            dense_x = dense_x.mean(dim=-2)
            dense_padding_mask = dense_padding_mask.all(dim=-1)
        else:
            ones = torch.ones((bsz, dense_x.size(2)), device=dense_x.device)
            indices = ones.multinomial(1)
            indices = indices.unsqueeze(-1).expand(-1, target_num, -1)
            indices_ld = indices.unsqueeze(-1).expand(-1, -1, -1, fsz)
            dense_x = dense_x.gather(2, indices_ld).reshape(bsz, -1, fsz)
            dense_padding_mask = dense_padding_mask.gather(2, index=indices).reshape(
                bsz, -1
            )
        return dense_x, dense_padding_mask


class JoinSegmenter(Segmenter):
    def logit_segment(self, logits, padding_mask):
        preds = logits.argmax(dim=-1)

        if padding_mask.any():
            preds[padding_mask] = -1  # mark pad
        uniques = []

        bsz, tsz, csz = logits.shape

        for p in preds:
            uniques.append(
                p.cpu().unique_consecutive(return_inverse=True, return_counts=True)
            )

        new_tsz = max(u[0].numel() for u in uniques)
        new_logits = logits.new_zeros(bsz, new_tsz, csz)
        new_pad = padding_mask.new_zeros(bsz, new_tsz)

        for b in range(bsz):
            u, idx, c = uniques[b]
            keep = u != -1

            if self.cfg.remove_zeros:
                keep.logical_and_(u != 0)

            if self.training and not self.cfg.mean_pool_join:
                u[0] = 0
                u[1:] = c.cumsum(0)[:-1]
                m = c > 1
                r = torch.rand(m.sum())
                o = (c[m] * r).long()
                u[m] += o
                new_logits[b, : u.numel()] = logits[b, u]
            else:
                new_logits[b].index_add_(
                    dim=0, index=idx.to(new_logits.device), source=logits[b]
                )
                new_logits[b, : c.numel()] /= c.unsqueeze(-1).to(new_logits.device)

            new_sz = keep.sum()
            if not keep.all():
                kept_logits = new_logits[b, : c.numel()][keep]
                new_logits[b, :new_sz] = kept_logits

            if new_sz < new_tsz:
                pad = new_tsz - new_sz
                new_logits[b, -pad:] = 0
                new_pad[b, -pad:] = True

        return new_logits, new_pad


class UniformRandomJoinSegmenter(UniformRandomSegmenter, JoinSegmenter):
    pass


SEGMENT_FACTORY = {
    SegmentationType.NONE: Segmenter,
    SegmentationType.RANDOM: RandomSegmenter,
    SegmentationType.UNIFORM_RANDOM: UniformRandomSegmenter,
    SegmentationType.UNIFORM_RANDOM_JOIN: UniformRandomJoinSegmenter,
    SegmentationType.JOIN: JoinSegmenter,
}


class Discriminator(nn.Module):
    def __init__(self, dim, cfg: Wav2vec_UConfig):
        super().__init__()

        inner_dim = cfg.discriminator_dim
        kernel = cfg.discriminator_kernel
        dilation = cfg.discriminator_dilation
        self.max_pool = cfg.discriminator_max_pool

        if cfg.discriminator_causal:
            padding = kernel - 1
        else:
            padding = kernel // 2

        def make_conv(in_d, out_d, k, p=0, has_dilation=True):
            conv = nn.Conv1d(
                in_d,
                out_d,
                kernel_size=k,
                padding=p,
                dilation=dilation if has_dilation else 1,
            )
            if cfg.discriminator_spectral_norm:
                conv = nn.utils.spectral_norm(conv)
            elif cfg.discriminator_weight_norm:
                conv = nn.utils.weight_norm(conv)
            return conv

        inner_net = [
            nn.Sequential(
                make_conv(inner_dim, inner_dim, kernel, padding),
                SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
                nn.Dropout(cfg.discriminator_dropout),
                nn.GELU(),
            )
            for _ in range(cfg.discriminator_depth - 1)
        ] + [
            make_conv(inner_dim, 1, kernel, padding, has_dilation=False),
            SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
        ]

        if cfg.discriminator_linear_emb:
            emb_net = [make_conv(dim, inner_dim, 1)]
        else:
            emb_net = [
                make_conv(dim, inner_dim, kernel, padding),
                SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
            ]

        if cfg.discriminator_act_after_linear:
            emb_net.append(nn.GELU())

        self.net = nn.Sequential(
            *emb_net,
            nn.Dropout(cfg.discriminator_dropout),
            *inner_net,
        )

    def forward(self, x, padding_mask):
        x = x.transpose(1, 2)  # BTC -> BCT
        x = self.net(x)
        x = x.transpose(1, 2)
        x_sz = x.size(1)
        if padding_mask is not None and padding_mask.any() and padding_mask.dim() > 1:
            padding_mask = padding_mask[:, : x.size(1)]
            x[padding_mask] = float("-inf") if self.max_pool else 0
            x_sz = x_sz - padding_mask.sum(dim=-1)
        x = x.squeeze(-1)
        if self.max_pool:
            x, _ = x.max(dim=-1)
        else:
            x = x.sum(dim=-1)
            x = x / x_sz
        return x


class Generator(nn.Module):
    def __init__(self, input_dim, output_dim, cfg: Wav2vec_UConfig):
        super().__init__()

        self.cfg = cfg
        self.output_dim = output_dim
        self.stride = cfg.generator_stride
        self.dropout = nn.Dropout(cfg.generator_dropout)
        self.batch_norm = cfg.generator_batch_norm != 0
        self.residual = cfg.generator_residual

        padding = (
            cfg.generator_kernel // 2 if cfg.generator_pad < 0 else cfg.generator_pad
        )
        self.proj = nn.Sequential(
            TransposeLast(),
            nn.Conv1d(
                input_dim,
                output_dim,
                kernel_size=cfg.generator_kernel,
                stride=cfg.generator_stride,
                dilation=cfg.generator_dilation,
                padding=padding,
                bias=cfg.generator_bias,
            ),
            TransposeLast(),
        )

        if self.batch_norm:
            self.bn = nn.BatchNorm1d(input_dim)
            self.bn.weight.data.fill_(cfg.generator_batch_norm)
        if self.residual:
            self.in_proj = nn.Linear(input_dim, input_dim)

    def forward(self, dense_x, tokens, dense_padding_mask):
        result = {}

        if self.batch_norm:
            dense_x = self.bn_padded_data(dense_x, dense_padding_mask)
        if self.residual:
            inter_x = self.in_proj(self.dropout(dense_x))
            dense_x = dense_x + inter_x
            result["inter_x"] = inter_x

        dense_x = self.dropout(dense_x)

        dense_x = self.proj(dense_x)
        if self.stride > 1:
            dense_padding_mask = dense_padding_mask[:, :: self.stride]

        if dense_padding_mask.size(1) != dense_x.size(1):
            new_padding = dense_padding_mask.new_zeros(dense_x.shape[:-1])
            diff = new_padding.size(1) - dense_padding_mask.size(1)

            if diff > 0:
                new_padding[:, diff:] = dense_padding_mask
            else:
                assert diff < 0
                new_padding = dense_padding_mask[:, :diff]

            dense_padding_mask = new_padding

        token_x = None
        if tokens is not None:
            token_x = dense_x.new_zeros(tokens.numel(), self.output_dim)
            token_x.scatter_(1, tokens.view(-1, 1).long(), 1)
            token_x = token_x.view(tokens.shape + (self.output_dim,))

        result["dense_x"] = dense_x
        result["token_x"] = token_x
        result["dense_padding_mask"] = dense_padding_mask

        return result

    def bn_padded_data(self, feature, padding_mask):
        normed_feature = feature.clone()
        normed_feature[~padding_mask] = self.bn(
            feature[~padding_mask].unsqueeze(-1)
        ).squeeze(-1)
        return normed_feature


@register_model("wav2vec_u", dataclass=Wav2vec_UConfig)
class Wav2vec_U(BaseFairseqModel):
    def calc_gradient_penalty(self, real_data, fake_data):

        b_size = min(real_data.size(0), fake_data.size(0))
        t_size = min(real_data.size(1), fake_data.size(1))

        if self.cfg.probabilistic_grad_penalty_slicing:

            def get_slice(data, dim, target_size):

                size = data.size(dim)
                diff = size - target_size
                if diff <= 0:
                    return data

                start = np.random.randint(0, diff + 1)
                return data.narrow(dim=dim, start=start, length=target_size)

            real_data = get_slice(real_data, 0, b_size)
            real_data = get_slice(real_data, 1, t_size)
            fake_data = get_slice(fake_data, 0, b_size)
            fake_data = get_slice(fake_data, 1, t_size)

        else:
            real_data = real_data[:b_size, :t_size]
            fake_data = fake_data[:b_size, :t_size]

        alpha = torch.rand(real_data.size(0), 1, 1)
        alpha = alpha.expand(real_data.size())
        alpha = alpha.to(real_data.device)

        interpolates = alpha * real_data + ((1 - alpha) * fake_data)

        disc_interpolates = self.discriminator(interpolates, None)

        gradients = autograd.grad(
            outputs=disc_interpolates,
            inputs=interpolates,
            grad_outputs=torch.ones(disc_interpolates.size(), device=real_data.device),
            create_graph=True,
            retain_graph=True,
            only_inputs=True,
        )[0]

        gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2
        return gradient_penalty

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)
        self.update_num = num_updates
        self.curr_temp = max(
            self.max_temp * self.temp_decay ** num_updates, self.min_temp
        )

    def discrim_step(self, num_updates):
        return num_updates % 2 == 1

    def get_groups_for_update(self, num_updates):
        return "discriminator" if self.discrim_step(num_updates) else "generator"

    def __init__(self, cfg: Wav2vec_UConfig, target_dict):
        super().__init__()

        self.cfg = cfg
        self.zero_index = target_dict.index("<SIL>") if "<SIL>" in target_dict else 0
        self.smoothness_weight = cfg.smoothness_weight

        output_size = len(target_dict)
        self.pad = target_dict.pad()
        self.eos = target_dict.eos()
        self.smoothing = cfg.smoothing
        self.smoothing_one_sided = cfg.smoothing_one_sided
        self.no_softmax = cfg.no_softmax
        self.gumbel = cfg.gumbel
        self.hard_gumbel = cfg.hard_gumbel
        self.last_acc = None

        self.gradient_penalty = cfg.gradient_penalty
        self.code_penalty = cfg.code_penalty
        self.mmi_weight = cfg.mmi_weight
        self.blank_weight = cfg.blank_weight
        self.blank_mode = cfg.blank_mode
        self.blank_index = target_dict.index("<SIL>") if cfg.blank_is_sil else 0
        assert self.blank_index != target_dict.unk()

        self.discriminator = Discriminator(output_size, cfg)
        for p in self.discriminator.parameters():
            p.param_group = "discriminator"

        self.pca_A = self.pca_b = None
        d = cfg.input_dim

        self.segmenter = SEGMENT_FACTORY[cfg.segmentation.type](cfg.segmentation)

        self.generator = Generator(d, output_size, cfg)

        for p in self.generator.parameters():
            p.param_group = "generator"

        for p in self.segmenter.parameters():
            p.param_group = "generator"

        self.max_temp, self.min_temp, self.temp_decay = cfg.temp
        self.curr_temp = self.max_temp
        self.update_num = 0

        if self.mmi_weight > 0:
            self.target_downsample_rate = cfg.target_downsample_rate
            self.decoder = nn.Linear(d, cfg.target_dim)
            for p in self.decoder.parameters():
                p.param_group = "generator"

    @classmethod
    def build_model(cls, cfg, task):
        return cls(cfg, task.target_dictionary)

    def get_logits(
        self,
        net_output: Optional[Dict[str, List[Optional[torch.Tensor]]]],
        normalize: bool = False,
    ):
        logits = net_output["logits"]

        if self.blank_weight != 0:
            if self.blank_mode == "add":
                logits[..., self.blank_index] += self.blank_weight
            elif self.blank_mode == "set":
                logits[..., self.blank_index] = self.blank_weight
            else:
                raise Exception(f"invalid blank mode {self.blank_mode}")

        padding = net_output["padding_mask"]
        if padding.any():
            logits[padding] = float("-inf")
            logits[padding][..., self.blank_index] = float("inf")

        if normalize:
            logits = utils.log_softmax(logits.float(), dim=-1)

        return logits.transpose(0, 1)

    def get_normalized_probs(
        self,
        net_output: Tuple[
            torch.Tensor, Optional[Dict[str, List[Optional[torch.Tensor]]]]
        ],
        log_probs: bool,
        sample: Optional[Dict[str, torch.Tensor]] = None,
    ):
        logits = self.get_logits(net_output)

        probs = super().get_normalized_probs(logits, log_probs, sample)
        # BTC -> TBC for ctc
        probs = probs.transpose(0, 1)
        return probs

    def normalize(self, dense_x):

        bsz, tsz, csz = dense_x.shape

        if dense_x.numel() == 0:
            raise Exception(dense_x.shape)
        _, k = dense_x.max(-1)
        hard_x = (
            dense_x.new_zeros(bsz * tsz, csz)
            .scatter_(-1, k.view(-1, 1), 1.0)
            .view(-1, csz)
        )
        hard_probs = torch.mean(hard_x.float(), dim=0)
        code_perplexity = torch.exp(
            -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
        )

        avg_probs = torch.softmax(dense_x.reshape(-1, csz).float(), dim=-1).mean(dim=0)
        prob_perplexity = torch.exp(
            -torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1)
        )

        if not self.no_softmax:
            if self.training and self.gumbel:
                dense_x = F.gumbel_softmax(
                    dense_x.float(), tau=self.curr_temp, hard=self.hard_gumbel
                ).type_as(dense_x)
            else:
                dense_x = dense_x.softmax(-1)

        return dense_x, code_perplexity, prob_perplexity

    def forward(
        self,
        features,
        padding_mask,
        random_label=None,
        dense_x_only=False,
        segment=True,
        aux_target=None,
    ):
        if segment:
            features, padding_mask = self.segmenter.pre_segment(features, padding_mask)

        orig_size = features.size(0) * features.size(1) - padding_mask.sum()

        gen_result = self.generator(features, random_label, padding_mask)

        orig_dense_x, token_x = gen_result["dense_x"], gen_result["token_x"]
        orig_dense_padding_mask = gen_result["dense_padding_mask"]

        if segment:
            dense_x, dense_padding_mask = self.segmenter.logit_segment(
                orig_dense_x, orig_dense_padding_mask
            )
        else:
            dense_x = orig_dense_x
            dense_padding_mask = orig_dense_padding_mask

        dense_logits = dense_x
        prob_perplexity = None
        code_perplexity = None

        if not (self.no_softmax and dense_x_only):
            dense_x, code_perplexity, prob_perplexity = self.normalize(dense_logits)

        if dense_x_only or self.discriminator is None:
            return {
                "logits": dense_x,
                "padding_mask": dense_padding_mask,
            }

        token_padding_mask = random_label == self.pad

        dense_y = self.discriminator(dense_x, dense_padding_mask)
        token_y = self.discriminator(token_x, token_padding_mask)

        sample_size = features.size(0)

        d_step = self.discrim_step(self.update_num)

        fake_smooth = self.smoothing
        real_smooth = self.smoothing
        if self.smoothing_one_sided:
            fake_smooth = 0

        zero_loss = None
        smoothness_loss = None
        code_pen = None
        mmi_loss = None

        if d_step:
            loss_dense = F.binary_cross_entropy_with_logits(
                dense_y,
                dense_y.new_ones(dense_y.shape) - fake_smooth,
                reduction="sum",
            )
            loss_token = F.binary_cross_entropy_with_logits(
                token_y,
                token_y.new_zeros(token_y.shape) + real_smooth,
                reduction="sum",
            )
            if self.training and self.gradient_penalty > 0:
                grad_pen = self.calc_gradient_penalty(token_x, dense_x)
                grad_pen = grad_pen.sum() * self.gradient_penalty
            else:
                grad_pen = None
        else:
            grad_pen = None
            loss_token = None
            loss_dense = F.binary_cross_entropy_with_logits(
                dense_y,
                dense_y.new_zeros(dense_y.shape) + fake_smooth,
                reduction="sum",
            )
            num_vars = dense_x.size(-1)
            if prob_perplexity is not None:
                code_pen = (num_vars - prob_perplexity) / num_vars
                code_pen = code_pen * sample_size * self.code_penalty

            if self.smoothness_weight > 0:
                smoothness_loss = F.mse_loss(
                    dense_logits[:, :-1], dense_logits[:, 1:], reduction="none"
                )
                smoothness_loss[dense_padding_mask[:, 1:]] = 0
                smoothness_loss = (
                    smoothness_loss.mean() * sample_size * self.smoothness_weight
                )

            if (self.mmi_weight > 0) and (aux_target is not None):
                inter_x = self.decoder(gen_result["inter_x"])
                if self.target_downsample_rate > 1:
                    aux_target = aux_target[:, :: self.target_downsample_rate]
                max_t_len = min(aux_target.shape[1], inter_x.shape[1])
                mmi_loss = F.cross_entropy(
                    inter_x[:, :max_t_len].transpose(1, 2),
                    aux_target[:, :max_t_len],
                    ignore_index=-1,
                    reduction="none",
                )
                mmi_loss = mmi_loss.mean() * mmi_loss.shape[0] * self.mmi_weight

        result = {
            "losses": {
                "grad_pen": grad_pen,
                "code_pen": code_pen,
                "smoothness": smoothness_loss,
                "mmi": mmi_loss,
            },
            "temp": self.curr_temp,
            "code_ppl": code_perplexity,
            "prob_ppl": prob_perplexity,
            "d_steps": int(d_step),
            "sample_size": sample_size,
        }

        suff = "_d" if d_step else "_g"
        result["losses"]["dense" + suff] = loss_dense
        result["losses"]["token" + suff] = loss_token

        return result