vq-wav2vec_featurize.py 7.5 KB
Newer Older
Nikhilesh Bhatnagar's avatar
Nikhilesh Bhatnagar committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset
"""

import argparse
import glob
import os
import os.path as osp
import pprint

import soundfile as sf
import torch
import fairseq
from torch import nn
from torch.utils.data import DataLoader


try:
    import tqdm
except:
    print("Install tqdm to use --log-format=tqdm")


class FilesDataset:
    def __init__(self, files, labels):
        self.files = files
        if labels and osp.exists(labels):
            with open(labels, "r") as lbl_f:
                self.labels = [line.rstrip() for line in lbl_f]
        else:
            self.labels = labels

    def __len__(self):
        return len(self.files)

    def __getitem__(self, index):
        fname = self.files[index]

        wav, sr = sf.read(fname)
        assert sr == 16000

        wav = torch.from_numpy(wav).float()
        lbls = None
        if self.labels:
            if isinstance(self.labels, str):
                lbl_file = osp.splitext(fname)[0] + "." + self.labels
                with open(lbl_file, "r") as lblf:
                    lbls = lblf.readline()
                    assert lbls is not None
            else:
                lbls = self.labels[index]
        return wav, lbls

    def collate(self, batch):
        return batch


class ArgTypes:
    @staticmethod
    def existing_path(arg):
        arg = str(arg)
        assert osp.exists(arg), f"File {arg} does not exist"
        return arg

    @staticmethod
    def mkdir(arg):
        arg = str(arg)
        os.makedirs(arg, exist_ok=True)
        return arg


class DatasetWriter:
    def __init__(self):

        self.args = self.load_config()
        pprint.pprint(self.args.__dict__)

        self.model = self.load_model()

    def __getattr__(self, attr):
        return getattr(self.args, attr)

    def read_manifest(self, fname):

        with open(fname, "r") as fp:
            lines = fp.read().split("\n")
            root = lines.pop(0).strip()
            fnames = [
                osp.join(root, line.split("\t")[0]) for line in lines if len(line) > 0
            ]

        return fnames

    def process_splits(self):

        if self.args.shard is not None or self.args.num_shards is not None:
            assert self.args.shard is not None and self.args.num_shards is not None

        for split in self.splits:
            print(split)

            if self.extension == "tsv":
                datadir = osp.join(self.data_dir, f"{split}.{self.extension}")
                print("Reading manifest file: ", datadir)
                files = self.read_manifest(datadir)
            else:
                datadir = osp.join(self.data_dir, split, f"**/*.{self.extension}")
                files = glob.glob(datadir, recursive=True)

            assert len(files) > 0

            if self.args.shard is not None:
                files = files[self.args.shard :: self.args.num_shards]

            lbls = []
            with open(self.data_file(split), "w") as srcf:
                for line, lbl in self.iterate(files):
                    print(line, file=srcf)
                    if self.args.labels:
                        lbls.append(lbl + "\n")

            if self.args.labels:
                assert all(a is not None for a in lbls)
                with open(self.lbl_file(split), "w") as lblf:
                    lblf.writelines(lbls)

    def iterate(self, files):

        data = self.load_data(files)
        for samples in tqdm.tqdm(data, total=len(files) // 32):

            for wav, lbl in samples:
                x = wav.unsqueeze(0).float().cuda()

                div = 1
                while x.size(-1) // div > self.args.max_size:
                    div += 1

                xs = x.chunk(div, dim=-1)

                result = []
                for x in xs:
                    torch.cuda.empty_cache()
                    x = self.model.feature_extractor(x)
                    if self.quantize_location == "encoder":
                        with torch.no_grad():
                            _, idx = self.model.vector_quantizer.forward_idx(x)
                            idx = idx.squeeze(0).cpu()
                    else:
                        with torch.no_grad():
                            z = self.model.feature_aggregator(x)
                            _, idx = self.model.vector_quantizer.forward_idx(z)
                            idx = idx.squeeze(0).cpu()
                    result.append(idx)

                idx = torch.cat(result, dim=0)
                yield " ".join("-".join(map(str, a.tolist())) for a in idx), lbl

    def lbl_file(self, name):
        shard_part = "" if self.args.shard is None else f".{self.args.shard}"
        return osp.join(self.output_dir, f"{name}.lbl{shard_part}")

    def data_file(self, name):
        shard_part = "" if self.args.shard is None else f".{self.args.shard}"
        return osp.join(self.output_dir, f"{name}.src{shard_part}")

    def var_file(self):
        return osp.join(self.output_dir, f"vars.pt")

    def load_config(self):

        parser = argparse.ArgumentParser("Vector Quantized wav2vec features")

        # Model Arguments
        parser.add_argument("--checkpoint", type=ArgTypes.existing_path, required=True)
        parser.add_argument("--data-parallel", action="store_true")

        # Output Arguments
        parser.add_argument("--output-dir", type=ArgTypes.mkdir, required=True)

        # Data Arguments
        parser.add_argument("--data-dir", type=ArgTypes.existing_path, required=True)
        parser.add_argument("--splits", type=str, nargs="+", required=True)
        parser.add_argument("--extension", type=str, required=True)
        parser.add_argument("--labels", type=str, required=False)

        parser.add_argument("--shard", type=int, default=None)
        parser.add_argument("--num-shards", type=int, default=None)
        parser.add_argument("--max-size", type=int, default=1300000)

        # Logger Arguments
        parser.add_argument(
            "--log-format", type=str, choices=["none", "simple", "tqdm"]
        )

        return parser.parse_args()

    def load_data(self, fnames):

        dataset = FilesDataset(fnames, self.args.labels)
        loader = DataLoader(
            dataset, batch_size=32, collate_fn=dataset.collate, num_workers=8
        )
        return loader

    def load_model(self):
        model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([self.checkpoint])
        model = model[0]

        self.quantize_location = getattr(cfg.model, "vq", "encoder")

        model.eval().float()
        model.cuda()

        if self.data_parallel:
            model = nn.DataParallel(model)

        return model

    def __call__(self):

        self.process_splits()

        if hasattr(self.model.feature_extractor, "vars") and (
            self.args.shard is None or self.args.shard == 0
        ):
            vars = (
                self.model.feature_extractor.vars.view(
                    self.model.feature_extractor.banks,
                    self.model.feature_extractor.num_vars,
                    -1,
                )
                .cpu()
                .detach()
            )
            print("writing learned latent variable embeddings: ", vars.shape)
            torch.save(vars, self.var_file())


if __name__ == "__main__":
    write_data = DatasetWriter()

    write_data()
    print("Done.")